DOI QR코드

DOI QR Code

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho (Materials and Manufacturing Technology Development Center, Corporate Research and Development Institute, Doosan Heavy Industries and Construction Co., LTD.) ;
  • Kim, Young-Deak (Materials and Manufacturing Technology Development Center, Corporate Research and Development Institute, Doosan Heavy Industries and Construction Co., LTD.) ;
  • Lee, Jong-Wook (Materials and Manufacturing Technology Development Center, Corporate Research and Development Institute, Doosan Heavy Industries and Construction Co., LTD.)
  • Received : 2018.02.07
  • Accepted : 2018.04.15
  • Published : 2018.11.20

Abstract

Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and energy (MOTIE)

References

  1. Y. Kim, Y. Park, J. Corr. Sci. Kor. 18, 67 (1989)
  2. H. Ha, H. Kwon, Electro. Acta 52, 2175 (2007) https://doi.org/10.1016/j.electacta.2006.08.034
  3. M.L.G. Byrnes, M. Grujicic, W.S. Owen, Acta Metall. 35, 1853 (1987) https://doi.org/10.1016/0001-6160(87)90131-3
  4. E. Werner, Mater. Sci. Eng., A 101, 93 (1988)
  5. J.W. Simmons, Mater. Sci. Eng., A 207, 159 (1996)
  6. G. Saller, K. Spiradek-Hahn, C. Scheu, H. Clemens, Mater. Sci. Eng., A 427, 246 (2006)
  7. P. Mullner, C. Solenthaler, P. Uggowitzer, M.O. Speidel, Mater. Sci. Eng., A 164, 164 (1993)
  8. D.T. Liewellyn, Mater. Sci. Technol. 13, 389 (1997) https://doi.org/10.1179/mst.1997.13.5.389
  9. K. Orita, Y. Ikeda, T. Iwadate, J. Ishizaka, ISIJ Int. 30, 587 (1990) https://doi.org/10.2355/isijinternational.30.587
  10. J.W. Simmons, Acta Mater. 45, 2467 (1997) https://doi.org/10.1016/S1359-6454(96)00343-6
  11. A.D. Schino, J.M. Kenny, Mater. Lett. 57, 3182 (2003) https://doi.org/10.1016/S0167-577X(03)00021-1
  12. A. Chlupova, J. Man, I. Kubena, J. Polak, L.P. Karkalainen, Proc. Eng. 74, 147 (2014) https://doi.org/10.1016/j.proeng.2014.06.239
  13. S. Kang, J. Jung, M. Kang, W. Woo, Y. Lee, Mater. Sci. Eng., A 652, 212 (2016)
  14. O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008) https://doi.org/10.1016/j.scriptamat.2007.10.050
  15. A. Jarvenpaa, L.P. Karjalainen, M. Jaskari, Int. J. Fatigue 65, 93 (2014) https://doi.org/10.1016/j.ijfatigue.2013.05.012
  16. A. Di Schino, M. Barteri, J.M. Kenny, J. Mater. Sci. Lett. 22, 1511 (2003) https://doi.org/10.1023/A:1026155215111
  17. M. Roach, S. Wright, J. Lemons, L. Zardiackas, Mater. Sci. Eng., A 586, 382 (2013)
  18. T. Lee, C. Oh, S. Kim, Scr. Mater. 58, 110 (2008) https://doi.org/10.1016/j.scriptamat.2007.09.029
  19. A. Frehn, E. Ratte, W. Bleck, in Proceedings 7th International Conference High Nitrogen Steels, eds by N. Akdut, B.C. Decooman, J. Foct (GRIPS Media GmbH, Ostend, Belgium, 2004), p. 447
  20. J. Shin, J. Lee, Mater. Charact. 91, 19 (2014) https://doi.org/10.1016/j.matchar.2014.01.025
  21. P. Changizian, A. Zarei-Hanzaki, H. Abedi, Mater. Sci. Eng., A 558, 44 (2012)
  22. H.E. Kadiri, J. Kapil, A.L. Oppedal Jr., L.G. Hector, S.R. Agnew, M. Cherkaoui, S.C. Vogel, Acta Mater. 61, 3549 (2013) https://doi.org/10.1016/j.actamat.2013.02.030
  23. S. Hong, S. Yoon, S. Lee, Int. J. Fatigue 25, 1293 (2003) https://doi.org/10.1016/S0142-1123(03)00154-3
  24. S. Hong, S. Lee, T. Byun, Mater. Sci. Eng., A 457, 139 (2007)
  25. Y. Luo, C. Huang, R. Tian, Q. Wang, J. Iron Steel Inst. 20, 50 (2007)
  26. Q. Zhou, L. Qian, J. Meng, L. Zhao, F. Zhang, Mater. Des. 85, 487 (2015) https://doi.org/10.1016/j.matdes.2015.06.172
  27. P. Guo, L. Qian, J. Meng, F. Zhang, L. Li, Mater. Sci. Eng., A 584, 133 (2013)
  28. S. Hong, S. Lee, Int. J. Fatigue 26, 899 (2004) https://doi.org/10.1016/j.ijfatigue.2003.12.002
  29. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, London, 1988)
  30. M. Mokhtarishirazabad, S.M.A. Boutorabi, M. Azadi, M. Nikravan, Mater. Sci. Eng., A 587, 179 (2013)
  31. P. Paris, F. Erdogan, J. Fluids Eng. 85, 528 (1963)
  32. Y. Uematsu, M. Akita, M. Nakajima, K. Tokaji, Int. J. Fatigue 30, 642 (2008) https://doi.org/10.1016/j.ijfatigue.2007.05.004
  33. S. Kang, J. Jung, M. Kang, W. Woo, Y. Lee, Mater. Sci. Eng., A 652, 212 (2016)
  34. A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng., A 517, 68 (2009)

Cited by

  1. Austenite Grain Growth Behavior of 30BF Steel Before Rough Rolling vol.25, pp.4, 2019, https://doi.org/10.1007/s12540-019-00246-x
  2. Hysteresis energy based low cycle fatigue properties analysis in extruded Al-7Zn-2Mg-1.5Cu-0.2Sc-0.1Zr alloy at low temperature vol.6, pp.11, 2018, https://doi.org/10.1088/2053-1591/ab4ab8
  3. Effects of Test Temperature on Low Cycle Fatigue Behaviors in Large Mold Steel vol.27, pp.7, 2018, https://doi.org/10.1007/s12540-020-00760-3
  4. Low Cycle Fatigue Performance and Failure Analysis of Reinforcing Bar vol.27, pp.12, 2018, https://doi.org/10.1007/s12540-020-00839-x