Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.845

Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy  

Park, Sanghoo (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Kim, Sumin (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Lee, Daeun (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Ahn, Soojin (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Kim, Sangshik (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 845-853 More about this Journal
Abstract
To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.
Keywords
Ti-6Al-4V; microstructure; fatigue; fatigue crack propagation; mill-annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. J. Kwon, K. R. Lim, Y. T. Lee, D. G. Lee, J. H. Lee, and S. E. Kim, Korean J. Met. Mater. 54, 925 (2016).   DOI
2 C. Soutis, Mater. Sci. Eng. A 412, 171 (2005).   DOI
3 G. Lutjering and J. C. Williams, Titanium, 2nd ed., pp.203-258, Springer, Berlin (2007).
4 G. R. Yoder, L. A. Cooley, and T. W. Crooker, Metall. Mater. Trans. A 8, 1737 (1977).   DOI
5 W. G. Seo, D. H. Jeong, D. J. Lee, H. K. Sung, Y. N. Kwon, and S. S. Kim, Met. Matert. Int. 23, 648 (2017).   DOI
6 R. K. Nalla, R. O. Ritchie B. L. Boyce, J. P. Campbell, and J. O. Peters, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 33, 899 (2002).   DOI
7 K. S. Ravichandran and E. S. Dwarakadasa, Scripta. Metall. Mater. 23, 1685 (1989).   DOI
8 M. A. Langoy and S. R. Stock, Metall. Mater. Trans. A 32, 2315 (2001).   DOI
9 G. Q. Wu, C. L. Shi, W. Sha, A. X. Sha, and H. R. Jiang, Mater. Design. 46, 668 (2012).
10 G. Lutjering and J. C. Williams, Titanium, 2nd ed., pp.431-433, Springer Berlin Heidelberg, New York (2007).
11 S. G. Ivanova, R. R. Biederman, and R. D. Sisson Jr, J. Mater. Eng. Perform. 11, 226 (2002).   DOI
12 P. Barriobero-Vila, G. Requena, T. Buslaps, M. Alfeld, and U. Boesenberg, J. Alloy. Compd. 626, 330 (2014).
13 H. K. Sung, D. H. Jeong, T. D. Park, J. S. Lee, and S. S. Kim, Met. Matert. Int. 22, 755 (2016).   DOI
14 D. H. Jeong, S. M. Hyun, H. K. Sung, Y. N. Kwon, and S.S. Kim, Met. Matert. Int. 22, 594 (2016).   DOI
15 N. L. Phung, N. Marti, A. Blanche, N. Ranc, V. Favier, A. Chrysochoos, N. Saintier, F. Gregori, B. Bacroix, and G. Thoquenne, Procedia Eng. 66, 615 (2013).   DOI
16 S. H. Kim, K. S. Kim, K. S. Cho, K. J. Euh, Y. M. Rhyim, and K.-A. Lee, Korean J. Met. Mater. 53, 96 (2015).
17 J. H. Zuo, Z. G. Wang, and E. H. Han, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 473, 147 (2008).   DOI
18 K. Sadananda and A. K.Vasudevan, Int. J. Fatigue 27, 1255 (2005).   DOI
19 M. Goto, S. Z. Han, S. H. Lim, J. Kitamura, T. Fujimura, J. H. Ahn, T. Yamamoto, J. Lee, and S. S. Kim, Int. J. Fatigue 87, 15 (2016).   DOI
20 D. H. Jeong, W. G. Seo, H. K. Sung, and S. S. Kim, Mater. Charact. 121, 103 (2016).   DOI
21 E. Hornbogen, and K. Z. Gahr, Acta. Metall. Mater. 24, 581 (1976).   DOI
22 J. O. Peters and G. Lutjering, Metall. Mater. Trans. A 32, 2805 (2001).   DOI
23 J. C. Newman Jr and Y. Yamada, Int. J. Fatigue 32, 879 (2010).   DOI
24 D. H. Jeong, H. K. Sung, T. D. Park, J. S. Lee, and S. S. Kim, Met. Matert. Int. 22, 601 (2016).   DOI