• Title/Summary/Keyword: H-gate

Search Result 624, Processing Time 0.034 seconds

A novel integrated a-Si:H gate driver

  • Lee, Jung-Woo;Hong, Hyun-Seok;Lee, Eung-Sang;Lee, Jung-Young;Yi, Jun-Shin;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1176-1178
    • /
    • 2007
  • A novel integrated a-Si:H gate driver with high reliability has been designed and simulated. Since the a-Si:H TFT is easily degraded by gate bias stress, we should optimize the circuit considering the threshold voltage shift. The conventional circuit shows voltage drop at the input stage by threshold voltage of the TFT, however, the proposed circuit dose not shows voltage drop and keeps constant regardless of threshold voltage shift of the TFT.

  • PDF

pH Sensing Properties of ISFETs with LPCVD Silicon Nitride Sensitive-Gate

  • Shin, Paik-Kyun;Thomas Mikolajick;Heiner Ryssel
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.82-87
    • /
    • 1997
  • Ion-Sensitive Field-Effect Transistors(ISFETs) with LPCVD silicon nitride as a sensitive gate were fabricated on the basis of a CMOS process. The silicon nitride was deposited directly on a poly silicon gate-electrode. Using a specially designed measuring cell, the hydrogen ions sensing properties of the ISFET in liquid could be investigated without any bonding or encapsulation. At first, th sensitivity was estimated by simualtions according to the site-binding theory and the experimental results were analysed and compared with simulated results. The measured dta were in good agreement with the simulated results. The silicon nitride based ISFET has good linearity evaluated from correlation factor ($\geq$0.9998) and a mean pH-sensitivity of 56.8mV/pH. The maximum hysteresis width between forward(pH=3\longrightarrowpH=11)- and backward(pH=11\longrightarrowpH=3) titration was 16.7mV at pH=6.54.

  • PDF

A robust data association gate method of non-linear target tracking in dense cluttered environment (고밀도 클러터 환경에서 비선형 표적추적에 강인한 자료결합 게이트 기법)

  • Kim, Seong-Weon;Kwon, Taek-Ik;Cho, Hyeon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • This paper proposes the H∞ norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H∞ norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.

A Novel 1700V 4H-SiC Double Trench MOSFET Structure for Low Switching Loss (스위칭 손실을 줄인 1700 V 4H-SiC Double Trench MOSFET 구조)

  • Na, Jae-Yeop;Jung, Hang-San;Kim, Kwang-Su
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, 1700 V EPDT (Extended P+ shielding floating gate Double Trench) MOSFET structure, which has a smaller switching time and loss than CDT (Conventional Double Trench) MOSFET, is proposed. The proposed EPDT MOSFET structure extended the P+ shielding area of the source trench in the CDT MOSFET structure and divided the gate into N+ and floating P- polysilicon gate. By comparing the two structures through Sentaurus TCAD simulation, the on-resistance was almost unchanged, but Crss (Gate-Drain Capacitance) decreased by 32.54 % and 65.5 %, when 0 V and 7 V was applied to the gate respectively. Therefore, the switching time and loss were reduced by 45 %, 32.6 % respectively, which shows that switching performance was greatly improved.

Effect of Hydrogen in the Gate Insulator on the Bottom Gate Oxide TFT

  • KoPark, Sang-Hee;Ryu, Min-Ki;Yang, Shin-Hyuk;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • The effect of hydrogen in the alumina gate insulator on the bottom gate oxide thin film transistor (TFT) with an InGaZnO film as the active layer was investigated. TFT with more H-containing alumina films (TFT A) fabricated via atomic layer deposition using a water precursor showed higher stability under positive and negative bias stresses than that with less H-containing alumina deposited using ozone (TFT B). While TFT A was affected by the pre-vacuum annealing of GI, which resulted in $V_{th}$ instability under NBS, TFT B did not show a difference after the pre-vacuum annealing of GI. All the TFTs showed negative-bias-enhanced photo instability.

A Study on the Optimal Design of the Gate Leaf of a Dam (DAM 수문의 최적설계에 관한 사찰)

  • 최상훈;한응교;양인홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1991
  • The design theory of roller gate has been systematized laying more emphasis on practical formulas than theoretical ones and the design procedure of the existing gate facilites is reviewed and analyaed on economical viewpoint and safety factor. The design theory of timoshenko, the thechnical standards for hydraulic gate and penstock of Japan, and the design standards for waterworks structures of Germany are applied to the study of optimal design of a gate leaf. In this study, gate leaf which is now being operated for water control at the seadike, estuary dam and reservoir dam are adopted as a mode, and a new design method by the computer is proposed through the variation of design elements within practical ranges. As a result, safety factor and economical design can be made by using T-beams to the horizontal and vertical beam of the gate leaf instead of H-beams used in the existing seadike roller gate at Asan, and total weight of gate leaf is reduced by the present optimization.

  • PDF

Gate-tunable Supercurrent in Graphene-based Josephson Junction (그래핀 조셉슨 접합에서 초전류의 게이트 전압 의존성)

  • Jeong, D.;Lee, G.H.;Doh, Y.J.;Lee, H.J.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • Mono-atomic-layer graphene is an interesting system for studying the relativistic carrier transport arising from a linear energy-momentum dispersion relation. An easy control of the carrier density in graphene by applying an external gate field makes the system even more useful. In this study, we measured the Josephson current in a device consisting of mono-layer graphene sheet sandwiched between two closely spaced (~300 nm) aluminum superconducting electrodes. Gate dependence of the supercurrent in graphene Josephson junction follows the gate dependence of the normal-state conductance. The gate-tunable and relatively large supercurrent in a graphene Josephson junction would facilitate our understanding on the weak-link behavior in a superconducting-normal metal-superconducting (SNS) type Josephson junction.

Compact Gate Capacitance Model with Polysilicon Depletion Effect for MOS Device

  • Abebe, H.;Morris, H.;Cumberbatch, E.;Tyree, V.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.209-213
    • /
    • 2007
  • The MOS gate capacitance model presented here is determined by directly solving the coupled Poisson equations on the poly and silicon sides, and includes the polysilicon (poly) gate depletion effect. Our compact gate capacitance model exhibits an excellent fit with measured data and parameter values extracted from data are physically acceptable. The data are collected from 0.5, 0.35, 0.25 and $0.18{\mu}m$ CMOS technologies.