Browse > Article

Gate-tunable Supercurrent in Graphene-based Josephson Junction  

Jeong, D. (Pohang University of Science and Technology)
Lee, G.H. (Pohang University of Science and Technology)
Doh, Y.J. (Korea University Sejong)
Lee, H.J. (Pohang University of Science and Technology)
Publication Information
Abstract
Mono-atomic-layer graphene is an interesting system for studying the relativistic carrier transport arising from a linear energy-momentum dispersion relation. An easy control of the carrier density in graphene by applying an external gate field makes the system even more useful. In this study, we measured the Josephson current in a device consisting of mono-layer graphene sheet sandwiched between two closely spaced (~300 nm) aluminum superconducting electrodes. Gate dependence of the supercurrent in graphene Josephson junction follows the gate dependence of the normal-state conductance. The gate-tunable and relatively large supercurrent in a graphene Josephson junction would facilitate our understanding on the weak-link behavior in a superconducting-normal metal-superconducting (SNS) type Josephson junction.
Keywords
Graphene; Josephson junction; supercurrent; proximity effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Nature 446 (7131), 56-59 (2007).   DOI   ScienceOn
2 X. Du, I. Skachko and E. Y. Andrei, Physical Review B 77 (18), 184507 (2008).   DOI
3 A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
4 J. Moser, A. Barreiro and A. Bachtold, Applied Physics Letters 91 (16), 163513-163513 (2007).   DOI
5 M. Tinkham, Introduction to superconductivity. (Dover Pubns, 2004).
6 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Communications 146 (9-10), 351-355 (2008).   DOI
7 M. F. Craciun, RussoS, YamamotoM, J. B. Oostinga, A. F. Morpurgo and TaruchaS, Nat Nano 4 (6), 383-388 (2009).   DOI   ScienceOn
8 J. R. Williams, D. A. Abanin, L. DiCarlo, L. S. Levitov and C. M. Marcus, Physical Review B 80 (4), 045408 (2009).   DOI
9 P. Jarillo-Herrero, J. A. van Dam and L. P. Kouwenhoven, Nature 439 (7079), 953-956 (2006).   DOI   ScienceOn
10 Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438 (7065), 201-204 (2005).   DOI   ScienceOn
11 C. W. J. Beenakker, Physical Review Letters 97 (6), 067007 (2006).   DOI
12 M. Titov and C. W. J. Beenakker, Physical Review B 74 (4), 041401 (2006).
13 J. H. Chen, C. Jang, M. Ishigami, S. Xiao, W. G. Cullen, E. D. Williams and M. S. Fuhrer, Solid State Communications 149 (27-28), 1080-1086 (2009).   DOI   ScienceOn
14 J. Xiang, VidanA, TinkhamM, R. M. Westervelt and C. M. Lieber, Nat Nano 1 (3), 208-213 (2006).   DOI   ScienceOn
15 B. D. Josephson, Physics Letters 1 (7), 251-253 (1962).   DOI   ScienceOn
16 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438 (7065), 197-200 (2005).   DOI   ScienceOn
17 Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven and S. De Franceschi, Science 309 (5732), 272-275 (2005).   DOI