DOI QR코드

DOI QR Code

A robust data association gate method of non-linear target tracking in dense cluttered environment

고밀도 클러터 환경에서 비선형 표적추적에 강인한 자료결합 게이트 기법

  • 김성원 (국방과학연구소 소나체계개발단) ;
  • 권택익 (국방과학연구소 소나체계개발단) ;
  • 조현덕 (국방과학연구소 소나체계개발단)
  • Received : 2020.12.04
  • Accepted : 2021.02.02
  • Published : 2021.03.31

Abstract

This paper proposes the H∞ norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H∞ norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.

본 논문은 고밀도 클러터 환경 비선형 표적에 대해서 수동소나 자동표적추적 자료결합 게이트를 강인하게 적용하기 위한 H∞ 놈 기반의 자료결합 게이트 기법을 제안한다. 표적추적을 위한 자료결합 기법은 유효 측정 범위인 유효 게이트 내에 있는 측정치를 자료결합의 후보대상으로 선택한다. 자료결합에서의 유효 게이트 범위가 적정하지 않거나 고밀도 클러터 환경에서 자료결합이 수행되면, 클러터 측정치의 간섭을 더욱 받게 되어 표적추적의 강인성을 유지하기 어렵다. 이러한 문제를 해결하기 위해서, 본 논문은 가우시안 분포 가정 및 추적 오차 공분산 기반의 기존 3-σ 게이트 기법에 H∞ 놈 기반의 이분법 알고리즘을 결합하여 적용한 새로운 게이팅 기법을 제안한다. 제안 기법은 클러터의 간섭을 완화시키고, 비선형 기동표적을 견실하게 추적하게 한다. 해석적인 분석 방법과 수평방위 및 수직방위의 측정치를 모의한 신호를 활용한 시뮬레이션을 통해 자료결합의 강인함이 기존 기법에 대비하여 향상됨을 확인하였다.

Keywords

References

  1. Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association (Academic Press, Boston, 1983), Chap. 5, Chap. 6, Chap. 7.
  2. Y. Bar-Shalom and X. R. Li, Estimation and Tracking : Principles, Techniques and Software (Artech House, Boston, 1993), Chap. 3.
  3. S. S. Blackman, Multiple-Target Tracking with Radar Applications (Artech House, Dedham, 1986), Chap. 9, Chap. 13.
  4. B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter : Particle Filters for Tracking Applications (Artech House, Boston, 2004), Chap. 4.
  5. L. D. Stone, C. A. Barlow, and T. L. Corwin, Bayesian Multiple Target Tracking (Artech House, Boston, 1999), Chap. 4.
  6. X. R. Li and Y. Bar-Shalom, "Tracking in clutter with nearest neighbor filters: analysis and performance," IEEE Trans. Aero. Elec. Sys. 32, 995-1010 (1996). https://doi.org/10.1109/7.532259
  7. X. R. Li, "Tracking in clutter with strongest neighbor measurements-part I: theoretical analysis," IEEE Trans. Autom. Control, 43, 1560-1578 (1998). https://doi.org/10.1109/9.728872
  8. T. Kirubarajan and Y. Bar-shalom, "Probabilistic data association techniques for target tracking in clutter," Proc. IEEE. 92, 536-557 (2004). https://doi.org/10.1109/JPROC.2003.823149
  9. J. C. Willems and S. K. Mitter, "Controllability, observability, pole allocation, and state reconstruction," IEEE Trans. Autom. Control, 16, 582-595 (1971). https://doi.org/10.1109/TAC.1971.1099819
  10. T. L. Song and S. J. Shin, "A probabilistic nearest neighbor filter for m validated measurements," IEEE Trans. Signal. Proc. 54, 2797-2802 (2006).
  11. T. L. Song, Y. T. Lim, and D. G. Lee, "A probabilistic strongest neighbor filter algorithm for m validated measurements," IEEE Trans. Aero. Elec. Sys. 45, 431-442 (2009). https://doi.org/10.1109/TAES.2009.5089532
  12. D. Musicki, R. Evans, and S. Stankovic, "Integrated probabilistic data association," IEEE Trans. Autom. Control, 39, 1237-1241 (1994). https://doi.org/10.1109/9.293185
  13. D. Musicki and R. Evans, "Integrated probabilistic data association-finite resolution," Elsevier Automatica, 31, 559-570 (1995). https://doi.org/10.1016/0005-1098(95)98484-N
  14. A. F. Tchango, V. Thomas, O. Buffet, A. Dutech, and F. Flacher, "Tracking multiple interacting targets using a joint probabilistic data association filter," Proc.17th Int. Conf. on information fusion, 1-8 (2014).
  15. T. L. Song, H. W. Kim, and D. Musicki, "Iterated joint integrated probabilistic data association for multitarget tracking," IEEE Trans. Aero. Elec. Sys. 51, 642-653 (2015). https://doi.org/10.1109/TAES.2014.130571
  16. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," IEE Proc.-F, 140, 107-113 (1993).
  17. J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, "State-space solutions to standard H2 and H control problems," IEEE Trans. Autom. Control, 34, 831-847 (1989). https://doi.org/10.1109/9.29425
  18. R. E. Kalman, "A new approach to linear filtering and prediction problems," ASME Trans. J. Basic. Eng, 82, 35-45 (1960). https://doi.org/10.1115/1.3662552
  19. B. Hassibi, A. H. Sayed, and T. Kailath, "Linear estimation in Krein spaces - Part I: Theory," IEEE Trans. Autom. Control, 41, 18-33 (1996). https://doi.org/10.1109/9.481605
  20. S. W. Kim, I. S, Seo, M. J. Jeong, and K. S. Choi, "Data association method based on target signal feature for robust active sonar target tracking" (in Korean), Proc. KIMST. 779-780 (2014).
  21. G. E. Kuster, H-infinity norm calculation via a state space formulation, (Master Thesis, Virginia Polytechnic Institute and State University, 2012).
  22. Q. C. Wang, J. Li, M. X. Zhang, and C. H. Yang, "H-infinity filter based particle filter for maneuvering target tracking," Elsevier PIER B, 30, 103-116 (2011). https://doi.org/10.2528/PIERB11031504
  23. S. Boyd, V. Balakrishnan, and P. Kabamba, "A bisection method for computing the H norm of a transfer matrix and related problems," Springer-Verlag Math. Control Signals Systems, 2, 207-219 (1989). https://doi.org/10.1007/BF02551385
  24. B. N. Datta, Numerical Methods in Linear Control Systems : Design and Analysis (Elsevier Academic Press, San Diego, 2004), Chap. 10.
  25. A. Jameson, "Solution of equation AX + XB = C by inversion of an M x M or N x N matrix," SIAM J. Appl. Math, 16, 1020-1023 (1968). https://doi.org/10.1137/0116083