Gate-tunable Supercurrent in Graphene-based Josephson Junction

그래핀 조셉슨 접합에서 초전류의 게이트 전압 의존성

  • Jeong, D. (Pohang University of Science and Technology) ;
  • Lee, G.H. (Pohang University of Science and Technology) ;
  • Doh, Y.J. (Korea University Sejong) ;
  • Lee, H.J. (Pohang University of Science and Technology)
  • Received : 2011.07.19
  • Accepted : 2011.08.12
  • Published : 2011.08.31

Abstract

Mono-atomic-layer graphene is an interesting system for studying the relativistic carrier transport arising from a linear energy-momentum dispersion relation. An easy control of the carrier density in graphene by applying an external gate field makes the system even more useful. In this study, we measured the Josephson current in a device consisting of mono-layer graphene sheet sandwiched between two closely spaced (~300 nm) aluminum superconducting electrodes. Gate dependence of the supercurrent in graphene Josephson junction follows the gate dependence of the normal-state conductance. The gate-tunable and relatively large supercurrent in a graphene Josephson junction would facilitate our understanding on the weak-link behavior in a superconducting-normal metal-superconducting (SNS) type Josephson junction.

Keywords

References

  1. B. D. Josephson, Physics Letters 1 (7), 251-253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0
  2. Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven and S. De Franceschi, Science 309 (5732), 272-275 (2005). https://doi.org/10.1126/science.1113523
  3. J. Xiang, VidanA, TinkhamM, R. M. Westervelt and C. M. Lieber, Nat Nano 1 (3), 208-213 (2006). https://doi.org/10.1038/nnano.2006.140
  4. P. Jarillo-Herrero, J. A. van Dam and L. P. Kouwenhoven, Nature 439 (7079), 953-956 (2006). https://doi.org/10.1038/nature04550
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438 (7065), 197-200 (2005). https://doi.org/10.1038/nature04233
  6. Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438 (7065), 201-204 (2005). https://doi.org/10.1038/nature04235
  7. C. W. J. Beenakker, Physical Review Letters 97 (6), 067007 (2006). https://doi.org/10.1103/PhysRevLett.97.067007
  8. M. Titov and C. W. J. Beenakker, Physical Review B 74 (4), 041401 (2006).
  9. J. H. Chen, C. Jang, M. Ishigami, S. Xiao, W. G. Cullen, E. D. Williams and M. S. Fuhrer, Solid State Communications 149 (27-28), 1080-1086 (2009). https://doi.org/10.1016/j.ssc.2009.02.042
  10. J. Moser, A. Barreiro and A. Bachtold, Applied Physics Letters 91 (16), 163513-163513 (2007). https://doi.org/10.1063/1.2789673
  11. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Communications 146 (9-10), 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  12. M. F. Craciun, RussoS, YamamotoM, J. B. Oostinga, A. F. Morpurgo and TaruchaS, Nat Nano 4 (6), 383-388 (2009). https://doi.org/10.1038/nnano.2009.89
  13. J. R. Williams, D. A. Abanin, L. DiCarlo, L. S. Levitov and C. M. Marcus, Physical Review B 80 (4), 045408 (2009). https://doi.org/10.1103/PhysRevB.80.045408
  14. M. Tinkham, Introduction to superconductivity. (Dover Pubns, 2004).
  15. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Nature 446 (7131), 56-59 (2007). https://doi.org/10.1038/nature05555
  16. X. Du, I. Skachko and E. Y. Andrei, Physical Review B 77 (18), 184507 (2008). https://doi.org/10.1103/PhysRevB.77.184507
  17. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).