• Title/Summary/Keyword: Graphitic Carbon

Search Result 84, Processing Time 0.025 seconds

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

Mechanical Properties of C-type Mesophase Pitch-based Carbon Fibers

  • Ryu, Seung-Kon;Rhee, Bo-Sung;Yang, Xiao Ping;Lu, Yafei
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.165-169
    • /
    • 2001
  • The C-type mesophase pitch-based carbon fiber (C-MPCF) was prepared throuch C-type spinnerette and compared the mechanical properties to those of round type mesophase pitch fiber (R-MPCF) and C-type isotropic pitch fiber (C-iPCF). The tensile strength and modulus of C-MPCF were about 18.6% and 35.7% higher than those of R-MPCF. The tensile strength of C-MPCF was 62% higher than that of C-iPCF of the same $8{\mu}m$ thickness because of more linear transverse texture, which could be easily converted to graphitic crystallinity during heat treatment. The torsional rigidity of C-MPCF was 2.37 times higher than that of R-MPCF. The electrical resistivity of C-MPCF was $8{\mu}{\Omega}{\cdot}m$. The C-iPCF shows far lower electrical resistivity than R-iPCF as well as the mesophase carbon fiber because of better alignment of texture to the fiber axis.

  • PDF

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Radiolabeled 2D graphitic nanomaterials and their possibility for molecular imaging applications

  • Kang, Seok Min;Kim, Chul Hee;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • In recent years, many researchers have attempted to make use of 2D nanoparticles as molecular imaging probes since extensive investigations proved that 2D nanoparticles in the body tends to accumulate certain lesions by enhanced permeability and retention (EPR) effect. For example, graphene and carbon nitride which have high surface area and modifiable properties showed good biocompatibility and targetability when it used as imaging probes. However, poor dispersibility in physiological mediums and its uncontrolled size limited its usage in bio-application. Therefore, oxidation process and mechanical exfoliation have been developed for overcoming these problems. In this paper, we highlight the several major methods to synthesize biocompatible 2D nanomaterials like graphene and carbon nitride especially for molecular imaging study including positron emission tomography (PET).

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Diamond Film Deposition on Ceramic Substrates by Hot-Filament CVD and Evaluation of the Adhesion (HF-CVD법에 의한 세라믹스 기판에의 다이아몬드박막 합성과 그 밀착성 평가)

  • Sin, Sun-Gi;Matsubara, Hideaki
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.575-580
    • /
    • 2000
  • Diamond thin films were deposited on $Si_3N_4$, SiC, TiC and $Al_2O_3$, substrates by the CVD method using Ta(TaC)Filament, and the appearance of the diamond films and their adhesion properties were examined by SEM, optical microscopy, indentation test and compression topple test. Diamond films were deposited at lower $CH_4$ concentration than 5%$CH_4$ for all kinds of the substrate material, but graphitic(amorphous)carbon was observed at 10%$CH_4$. The diamond film of about $12\mu\textrm{m}$ thickness on WC substrate partly peeled off, but the film on $Si_3N_4$ substrate held good adhesion. The indentation test showed that roughly ground surface was very effective for adhesion of diamond films to substrate. The topple test revealed that film thickness was an important factor governing the adhesion of the diamond film.

  • PDF

Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier

  • Kwon, Youbin;Shim, Wonbo;Jeon, Seung-Yeol;Youk, Ji-Ho;Yu, Woong-Ryeol
    • Carbon letters
    • /
    • v.20
    • /
    • pp.53-61
    • /
    • 2016
  • The reportedly synergistic effects of carbon nanotubes (CNTs) and graphene hybrids have prompted strong demand for an efficient modifier to enhance their dispersion. Here, we investigated the ability of poly(acrylonitrile) (PAN) to overcome the van der Waals interaction of multi-walled CNTs (MWCNTs) and graphene by employing a simple wrapping process involving ultrasonication and subsequent centrifugation of PAN/MWCNT/graphene solutions. The physical wrapping of MWCNTs and graphene with PAN was investigated for various PAN concentrations, in an attempt to simplify and improve the polymer-wrapping process. Transmission electron microscopy analysis confirmed the wrapping of the MWCNTs and graphene with PAN layers. The interaction between the graphitic structure and the PAN molecules was examined using proton nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The obtained results revealed that the cyano groups of the PAN molecules facilitated adhesion of the PAN molecules to the MWCNTs and graphene for polymer wrapping. The resulting enhanced dispersion of MWCNTs and graphene was verified from zeta potential and shelf-life measurements.

Preparation of Bucky Paper using Single-walled Carbon Nanotubes Purified through Surface Functionalization and Investigation of Their Field Emission Characteristics (기능화에 의한 단일벽 탄소나노튜브 정제 및 페이퍼 제조와 전계방출 특성 연구)

  • Goak, Jeung-Choon;Lee, Seung-Hwan;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • Single-walled carbon nanotubes (SWCNTs) were currently produced together with some contaminants such as a metallic catalyst, amorphous carbon, and graphitic nanoparticles, which should be sometimes purified for their applications. This study aimed to develop efficient, scalable purification processes but less harmful to SWCNTs. We designed three-step purification processes: acidic treatment, surface functionalization and soxhlet extraction, and heat treatment. During the soxhlet extraction using tetrahydrofuran, specifically, carbon impurities could be easily expelled through a glass thimble filter without any significant loss of CNTs. Finally, SWCNTs were left as a bulky paper on the filter through membrane filtration. Vertically aligned SWCNTs on one side of bulky paper were well developed in a speparation from the filter paper, which were formed by being sucked through the filter pores during the pressurized filtration. The bucky paper showed a very high peak current density of field emission up to $200\;mA/cm^2$ and uniform field emission images on phosphor, which seems very promising to be applied to vacuum microelectronics such as microwave power amplifiers and x-ray sources.

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process

  • Han, Sang-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.983-989
    • /
    • 2012
  • The purpose of this paper is to decide the optimum synthesis conditions of polycrystalline diamond films according to the ratio of gas mixture. Diamond films were deposited with cyclo-hexane as a carbon precursor by the microwave plasma enhanced chemical vapor deposition process. The optimum oxygen ratio to cyclo-hexane was reached about 125 % under the fixed 0.3% c-hexane in hydrogen. Oxygen plays a role in etching the graphitic components of carbon sp2 bond effectively. By OES measurement, the best synthesis conditions found out about 12.5 % and 15.75 %, which is the emission intensity ratios of CH(B-X) and $H{\beta}$ on $H{\alpha}$, respectively. Also, the electron temperature was similar about 5,000 to 5,200 K in this work.