DOI QR코드

DOI QR Code

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University) ;
  • Saravanamoorthy, Somasundaram (Department of Chemistry, National Institute of Technology) ;
  • Kim, Seung-Hyun (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University) ;
  • Chung, Ill-Min (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University)
  • Received : 2017.04.27
  • Accepted : 2017.06.12
  • Published : 2017.10.31

Abstract

Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Keywords

References

  1. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41, 797 (2012). https://doi.org/10.1039/C1CS15060J.
  2. Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ. Hollow core-shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci, 5, 9085 (2012). https://doi.org/10.1039/C2EE22815G.
  3. Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci, 5, 6474 (2012). https://doi.org/10.1039/C2EE03092F.
  4. Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett, 77, 2421 (2000). https://doi.org/10.1063/1.1290146.
  5. Wei K, Kim KO, Song KH, Kang CY, Lee JS, Gopiraman M, Kim IS. Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: a highly flexible electrode material for supercapacitor. J Mater Sci Technol, 33, 424 (2017). https://doi.org/10.1016/j.jmst.2016.03.014.
  6. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). https://doi.org/10.1021/nl200225j.
  7. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 10, 4863 (2010). https://doi.org/10.1021/nl102661q.
  8. Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y. Highperformance supercapacitor electrode materials prepared from various pollens. Small, 9, 1342 (2013). https://doi.org/10.1002/smll.201202943.
  9. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater, 25, 1993 (2013). https://doi.org/10.1002/adma.201204692.
  10. Lee SG, Park KH, Shim WG, Balathanigaimani MS, Moon H. Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J Ind Eng Chem, 17, 450 (2011). https://doi.org/10.1016/j.jiec.2010.10.025.
  11. Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces, 7, 3684 (2015). https://doi.org/10.1021/am5081919.
  12. Nabais JMV, Teixeira JG, Almeida I. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors. Bioresour Technol, 102, 2781 (2011). https://doi.org/10.1016/j. biortech.2010.11.083.
  13. Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 44, 1592 (2006). https://doi.org/10.1016/j.carbon.2006.02.011.
  14. Xu J, Gao Q, Zhang Y, Tan Y, Tian W, Zhu L, Jiang L. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep, 4, 5545 (2014). https://doi.org/10.1038/srep05545.
  15. Peng C, Yan XB, Wang RT, Lang JW, Ou YJ, Xue QJ. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta, 87, 401 (2013). https://doi.org/10.1016/j.electacta.2012.09.082.
  16. Choi WS, Shim WG, Ryu DW, Hwang MJ, Moon H. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous Mesoporous Mater, 155, 274 (2012). https://doi.org/10.1016/j.micromeso.2012.01.006.
  17. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 9, 2556 (2015). https://doi.org/10.1021/nn506394r.
  18. Shan D, Yang J, Liu W, Yan J, Fan Z. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A, 4, 13589 (2016). https://doi.org/10.1039/C6TA05406D.
  19. Gopiraman M, Deng D, Kim BS, Chung IM, Kim IS. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl Surf Sci, 409, 52 (2017). https://doi.org/10.1016/j.apsusc.2017.02.209.
  20. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ. Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon, 47, 1715 (2009). https://doi.org/10.1016/j.carbon.2009.02.024.
  21. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci, 8, 702 (2015). https://doi.org/10.1039/C4EE03229B.
  22. Ning X, Zhong W, Li S, Wang Y, Yang W. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A, 2, 8859 (2014). https://doi.org/10.1039/C4TA01038H.
  23. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano, 4, 1337 (2010). https://doi.org/10.1021/nn901825y.
  24. Mao L, Zhang Y, Hu Y, Ho KH, Ke Q, Liu H, Hu Z, Zhao D, Wang J. Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. RSC Adv, 5, 9307 (2015). https://doi.org/10.1039/c4ra11028e.
  25. Zhou M, Pu F, Wang Z, Guan S. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon, 68, 185 (2014). https://doi.org/10.1016/j.carbon. 2013.10.079.
  26. Falco C, Marco-Lozar JP, Salinas-Torres D, Morallon E, Cazorla-Amoros D, Titirici MM, Lozano-Castello D. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon, 62, 346 (2013). https://doi.org/10.1016/j.carbon.2013.06.017.
  27. Dias JM, Alvim-Ferraz MC, Almeida MF, Rivera-Utrilla J, San-chez-Polo M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage, 85, 833 (2007). https://doi.org/10.1016/j.jenvman.2007.07.031.
  28. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol, 111, 185 (2012). https://doi.org/10.1016/j. biortech.2012.02.010.
  29. Jun Y, Qian W, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 4, 1300816 (2014). https://doi.org/10.1002/aenm.201300816.
  30. Gopiraman M, Babu SG, Khatri Z, Kai W, Kim YA, Endo M, Kar vembu R, Kim IS. Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. J Phys Chem C, 117, 23582 (2013). https://doi.org/10.1021/jp402978q.
  31. Gao F, Qu J, Zhao Z, Wang Z, Qiu J. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta, 190, 1134 (2016). https://dx.doi.org/10.1016/j.electacta.2016.01.005.
  32. Yun YS, Lee S, Kim NR, Kang M, Leal C, Park KY, Kang K, Jin HJ. High and rapid alkali cation storage in ultramicroporous carbonaceous materials. J Power Sources, 313, 142 (2016). https://dx.doi.org/10.1016/j.jpowsour.2016.02.068.