Browse > Article
http://dx.doi.org/10.5714/CL.2017.24.73

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors  

Gopiraman, Mayakrishnan (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University)
Saravanamoorthy, Somasundaram (Department of Chemistry, National Institute of Technology)
Kim, Seung-Hyun (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University)
Chung, Ill-Min (Department of Applied Bioscience, College of Life & Environment Science, Konkuk University)
Publication Information
Carbon letters / v.24, no., 2017 , pp. 73-81 More about this Journal
Abstract
Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).
Keywords
pumpkin seeds; activated carbon; electrode materials; supercapacitors; cycle stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41, 797 (2012). https://doi.org/10.1039/C1CS15060J.   DOI
2 Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ. Hollow core-shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci, 5, 9085 (2012). https://doi.org/10.1039/C2EE22815G.   DOI
3 Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). https://doi.org/10.1021/nl200225j.   DOI
4 Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 10, 4863 (2010). https://doi.org/10.1021/nl102661q.   DOI
5 Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y. Highperformance supercapacitor electrode materials prepared from various pollens. Small, 9, 1342 (2013). https://doi.org/10.1002/smll.201202943.   DOI
6 Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater, 25, 1993 (2013). https://doi.org/10.1002/adma.201204692.   DOI
7 Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci, 5, 6474 (2012). https://doi.org/10.1039/C2EE03092F.   DOI
8 Xu J, Gao Q, Zhang Y, Tan Y, Tian W, Zhu L, Jiang L. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep, 4, 5545 (2014). https://doi.org/10.1038/srep05545.
9 Peng C, Yan XB, Wang RT, Lang JW, Ou YJ, Xue QJ. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta, 87, 401 (2013). https://doi.org/10.1016/j.electacta.2012.09.082.   DOI
10 Choi WS, Shim WG, Ryu DW, Hwang MJ, Moon H. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous Mesoporous Mater, 155, 274 (2012). https://doi.org/10.1016/j.micromeso.2012.01.006.   DOI
11 Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett, 77, 2421 (2000). https://doi.org/10.1063/1.1290146.   DOI
12 Wei K, Kim KO, Song KH, Kang CY, Lee JS, Gopiraman M, Kim IS. Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: a highly flexible electrode material for supercapacitor. J Mater Sci Technol, 33, 424 (2017). https://doi.org/10.1016/j.jmst.2016.03.014.   DOI
13 Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 44, 1592 (2006). https://doi.org/10.1016/j.carbon.2006.02.011.   DOI
14 Lee SG, Park KH, Shim WG, Balathanigaimani MS, Moon H. Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J Ind Eng Chem, 17, 450 (2011). https://doi.org/10.1016/j.jiec.2010.10.025.   DOI
15 Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces, 7, 3684 (2015). https://doi.org/10.1021/am5081919.   DOI
16 Nabais JMV, Teixeira JG, Almeida I. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors. Bioresour Technol, 102, 2781 (2011). https://doi.org/10.1016/j. biortech.2010.11.083.   DOI
17 Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ. Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon, 47, 1715 (2009). https://doi.org/10.1016/j.carbon.2009.02.024.   DOI
18 Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 9, 2556 (2015). https://doi.org/10.1021/nn506394r.   DOI
19 Shan D, Yang J, Liu W, Yan J, Fan Z. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A, 4, 13589 (2016). https://doi.org/10.1039/C6TA05406D.   DOI
20 Gopiraman M, Deng D, Kim BS, Chung IM, Kim IS. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl Surf Sci, 409, 52 (2017). https://doi.org/10.1016/j.apsusc.2017.02.209.   DOI
21 Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci, 8, 702 (2015). https://doi.org/10.1039/C4EE03229B.   DOI
22 Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol, 111, 185 (2012). https://doi.org/10.1016/j. biortech.2012.02.010.   DOI
23 Zhou M, Pu F, Wang Z, Guan S. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon, 68, 185 (2014). https://doi.org/10.1016/j.carbon. 2013.10.079.   DOI
24 Falco C, Marco-Lozar JP, Salinas-Torres D, Morallon E, Cazorla-Amoros D, Titirici MM, Lozano-Castello D. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon, 62, 346 (2013). https://doi.org/10.1016/j.carbon.2013.06.017.   DOI
25 Dias JM, Alvim-Ferraz MC, Almeida MF, Rivera-Utrilla J, San-chez-Polo M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage, 85, 833 (2007). https://doi.org/10.1016/j.jenvman.2007.07.031.   DOI
26 Jun Y, Qian W, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 4, 1300816 (2014). https://doi.org/10.1002/aenm.201300816.   DOI
27 Ning X, Zhong W, Li S, Wang Y, Yang W. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A, 2, 8859 (2014). https://doi.org/10.1039/C4TA01038H.   DOI
28 Gopiraman M, Babu SG, Khatri Z, Kai W, Kim YA, Endo M, Kar vembu R, Kim IS. Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. J Phys Chem C, 117, 23582 (2013). https://doi.org/10.1021/jp402978q.   DOI
29 Gao F, Qu J, Zhao Z, Wang Z, Qiu J. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta, 190, 1134 (2016). https://dx.doi.org/10.1016/j.electacta.2016.01.005.   DOI
30 Yun YS, Lee S, Kim NR, Kang M, Leal C, Park KY, Kang K, Jin HJ. High and rapid alkali cation storage in ultramicroporous carbonaceous materials. J Power Sources, 313, 142 (2016). https://dx.doi.org/10.1016/j.jpowsour.2016.02.068.   DOI
31 Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano, 4, 1337 (2010). https://doi.org/10.1021/nn901825y.   DOI
32 Mao L, Zhang Y, Hu Y, Ho KH, Ke Q, Liu H, Hu Z, Zhao D, Wang J. Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. RSC Adv, 5, 9307 (2015). https://doi.org/10.1039/c4ra11028e.   DOI