DOI QR코드

DOI QR Code

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T. (Dept. of Materials Technology, HCMC University of Technology and Education, Vietnam. And Nanotechnology Lab - SHTP Labs, R&D center) ;
  • Sporken, Robert (Research Center in Physics of Matter and Radiation (PMR),University of Namur (FUNDP))
  • Received : 2017.08.23
  • Accepted : 2017.09.19
  • Published : 2017.09.30

Abstract

By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

Keywords

References

  1. H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, and M. Inagaki, "Carbon-coated graphite for anode of Lithium ion rechargeable batteries: Carbon coating conditions and precursors," Journal of Power Sources, vol. 194, no. 1, pp. 486 - 493, 2009. https://doi.org/10.1016/j.jpowsour.2009.05.040
  2. L.-Z. Bai, D.-L. Zhao, T.-M. Zhang, W.-G. Xie, J.-M. Zhang,and Z.-M. Shen, "A comparative study of electrochemical performance of graphene sheets, expanded graphite and naturalgraphite as anode materials for Lithium-ion batteries," ElectrochimicaActa, vol. 107, pp. 555 - 561, 2013. https://doi.org/10.1016/j.electacta.2013.06.032
  3. J. Tarascon and M. Armand, "Issues and challenges facingrechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 197-200, 2001. https://doi.org/10.1038/35102562
  4. K. S.Novoselov, A. K. Geim, S. V.Morozov, D. Jiang, Y. Zhang,S. V. Dubonos, I. V. Grigorieva, and A. A.Firsov, "Electric field effect in atomically thin Carbon films," Science, vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
  5. K. S.Novoselov, A. K. Geim, S. V.Morozov, D. Jiang, I. V. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.Firsov, "Twodimensional gas of massless dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005. https://doi.org/10.1038/nature04233
  6. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar. 2007. https://doi.org/10.1038/nmat1849
  7. R. R. Nair, P. Blake, A. N. Grigorenko, K. Novoselov, T. J.Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, p. 1308, 2008. https://doi.org/10.1126/science.1156965
  8. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,F. Miao, and C. N. Lau, "Superior thermal conductivity ofsinglelayer graphene," Nano Letters, vol. 8, no. 3, pp. 902-907,Feb 2008. https://doi.org/10.1021/nl0731872
  9. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of elastic properties and intrinsic strength of monolayergraphene," Science, vol. 321, pp. 385-388, 2008. https://doi.org/10.1126/science.1157996
  10. J. Wintterlin and M.-L. Bocquet, "Graphene on metal surfaces," Surface Science, vol. 603, no. 10-12, pp. 1841-1852, 2009. https://doi.org/10.1016/j.susc.2008.08.037
  11. P. ThanhTrung, F. Joucken, J. Campos-Delgado, J.-P.Raskin, B. Hackens, and R. Sporken, "Direct growth of graphitic carbon on Si(111)," Applied Physics Letters, vol. 102, no. 1, pp. 013118-n/a, 2013. https://doi.org/10.1063/1.4773989
  12. J. Tang, C. Y. Kang, L. M. Li, W. S. Yan, S. Q. Wai, and P. S. Xu, "Graphene films grown on Si substrate via directdeposition of solidstate carbon atoms," Physica E, vol. 43, no.8,pp. 1415-1418, 2011. https://doi.org/10.1016/j.physe.2011.03.014
  13. J. Hass, W. A. de Heer, and E. H. Conrad, "The growthand morphology of epitaxial multilayer graphene," Journal ofPhysics: Condensed Matter, vol. 20, no. 32, pp. 323202-n/a, 2008. https://doi.org/10.1088/0953-8984/20/32/323202
  14. X. Li, Y. Hu, J. Liu, A. Lushington, R. Li, and X. Sun, "Structurally tailored graphene nanosheets as Lithium ion batteryanodes: an insight to yield exceptionally high Lithium storageperformance," Nanoscale, vol. 5, pp. 12607-12615, 2013. https://doi.org/10.1039/c3nr04823c
  15. G. Kucinskis, G. Bajars, and J. Kleperis, "Graphene in Lithiumion battery cathode materials: A review," Journal of PowerSources, vol. 240, pp. 66-79, 2013.
  16. S. Pei and H.-M. Cheng, "The reduction of graphene oxide,"Carbon, vol. 50, no. 9, pp. 3210-3228, 2012. https://doi.org/10.1016/j.carbon.2011.11.010
  17. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural defects in graphene," ACS Nano, vol. 5, no. 1, pp. 26-41,2011. https://doi.org/10.1021/nn102598m
  18. Z. Liu, J. Liu, P. Ren, Y.Wu, and P. Xu, "Effects of carbonization and substrate temperature on the growth of 3C-SiC on Siby SSMBE," Applied Surface Science, vol. 254, no. 10, pp. 3207-3210, 2008. https://doi.org/10.1016/j.apsusc.2007.10.085
  19. L. Johansson, P.-A. Glans, and N. Hellgren, "A core level andvalence band photoemission study of 6H-SiC(000-1)," SurfaceScience, vol. 405, no. 2-3, pp. 288-297, 1998.
  20. T. T. Pham, C. N. Santos, F. Joucken, B. Hackens, J.-P.Raskin, and R. Sporken, "The role of SiC as a diffusion barrier in the formation of graphene on Si(111)," Diamond andRelated Materials, vol. 66, pp. 141-148, 2016. https://doi.org/10.1016/j.diamond.2016.04.011
  21. J. Hackley, D. Ali, J. DiPasquale, J. D. Demaree, and C. J. K.Richardson, "Graphitic carbon growth on Si(111) using solidsource molecular beam epitaxy," Applied Physics Letters, vol. 95,pp. 133114-n/a, 2009. https://doi.org/10.1063/1.3242029
  22. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene andgraphene layers," Phys. Rev. Lett., vol. 97, pp. 187401-n/a, Oct.2006. https://doi.org/10.1103/PhysRevLett.97.187401
  23. W . A . d e H eer, C . B erger, M . R uan, M . Sprinkle, X. Li, Y. Hu,B. Zhang, J. Hankinson, and E. Conrad, "Large area andstructured epitaxial graphene produced by confinement controlled sublimation of silicon carbide," Proceedings of the National Academy of Sciences, vol. 108, no. 41, pp. 16900-16905, 2011. https://doi.org/10.1073/pnas.1105113108
  24. N. Sharma, D. Oh, H. Abernathy, M. Liu, P. N. First, and T. M. Orlando, "Signatures of epitaxial graphene grown on Siterminated 6H-SiC (0001)," Surface Science, vol. 604, no. 2, pp. 84-88, 2010. https://doi.org/10.1016/j.susc.2009.10.014
  25. O. Kazakova, V. Panchal, and T. L. Burnett, "Epitaxialgraphene and graphene-based devices studied by electricalscanning probe microscopy," Crystals, vol. 3, no. 1, pp. 191-233, 2013. https://doi.org/10.3390/cryst3010191
  26. J. D. Emery, B. Detlefs, H. J. Karmel, L. O. Nyakiti, D. K.Gaskill, M. C. Hersam, J. Zegenhagen, and M. J. Bedzyk, "Chemically resolved interface structure of epitaxial graphene on SiC(0001)," Phys. Rev. Lett., vol. 111, pp. 215501-n/a, Nov. 2013. https://doi.org/10.1103/PhysRevLett.111.215501
  27. K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, "Interaction, growth, and ordering of epitaxial graphene onSiC(0001) surfaces: A comparative photoelectron spectroscopystudy," Phys. Rev. B, vol. 77, pp. 155303-n/a, Apr. 2008. https://doi.org/10.1103/PhysRevB.77.155303
  28. A. Ouerghi, A. Kahouli, D. Lucot, M. Portail, L. Travers,J. Gierak, J. Penuelas, P. Jegou, A. Shukla, T. Chassagne, and M. Zielinski, "Epitaxial graphene on cubic SiC(111)/Si(111)substrate," Applied Physics Letters, vol. 96, no. 19, pp. 191910-n/a, 2010. https://doi.org/10.1063/1.3427406
  29. L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim,H. Mizusaki, A. Jorio, L. N. Coelho, R. . Magalhaes-Paniago, and M. A. Pimenta, "General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy," Applied Physics Letters, vol. 88, no. 16, pp. 163106-n/a, 2006. https://doi.org/10.1063/1.2196057
  30. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang,K. Leng, Y. Huang, Y. Ma, A. Yu, and Y. Chen, "Porous 3D graphene-based bulk materials with exceptional high surfacearea and excellent conductivity for supercapacitors," ScientificReports, vol. 3, no. 1408, 2013.
  31. Y. Wang, Y. Ye, and K. Wu, "Simultaneous observation ofthe triangular and honeycomb structures on highly orientedpyrolytic graphite at room temperature: An STM study," Surface Science, vol. 600, no. 3, pp. 729-734, 2006. https://doi.org/10.1016/j.susc.2005.12.001