• Title/Summary/Keyword: Gradient Vector Field

Search Result 67, Processing Time 0.031 seconds

GRADIENT YAMABE SOLITONS WITH CONFORMAL VECTOR FIELD

  • Fasihi-Ramandi, Ghodratallah;Ghahremani-Gol, Hajar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.165-171
    • /
    • 2021
  • The purpose of this paper is to investigate the geometry of complete gradient Yamabe soliton (Mn, g, f, λ) with constant scalar curvature admitting a non-homothetic conformal vector field V leaving the potential vector field invariant. We show that in such manifolds the potential function f is constant and the scalar curvature of g is determined by its soliton scalar. Considering the locally conformally flat case and conformal vector field V, without constant scalar curvature assumption, we show that g has constant curvature and determines the potential function f explicitly.

Closed-form Expressions of Magnetic Field and Magnetic Gradient Tensor due to a Circular Disk (원판형 이상체에 의한 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • In case axial symmetrical bodies with varying cross sections such as volcanic conduits and unexploded ordnance (UXO), it is efficient to approximate them by adding the response of thin disks perpendicular to the axis of symmetry. To compute the vector magnetic and magnetic gradient tensor respones by such bodies, it is necessary to derive an analytical expression of the circular disk. Therefore, in this study, we drive closed-form expressions of the vector magnetic and magnetic gradient tensor due to a circular disk. First, the vector magnetic field is obtained from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor due to the same disk with a constant density can be transformed into a magnetic field. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic field with respect to the cylindrical coordinates converted from the Cartesian coordinate system. Finally, both the vector magnetic and magnetic gradient tensors are derived using Lipschitz-Hankel type integrals based on the axial symmetry of the circular disk.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME WITH A GRADIENT VECTOR FIELD

  • Dibakar Dey;Pradip Majhi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.235-242
    • /
    • 2023
  • In this paper, we studied several geometrical aspects of a perfect fluid spacetime admitting a Ricci ρ-soliton and an η-Ricci ρ-soliton. Beside this, we consider the velocity vector of the perfect fluid space time as a gradient vector and obtain some Poisson equations satisfied by the potential function of the gradient solitons.

THE k-ALMOST RICCI SOLITONS AND CONTACT GEOMETRY

  • Ghosh, Amalendu;Patra, Dhriti Sundar
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.161-174
    • /
    • 2018
  • The aim of this article is to study the k-almost Ricci soliton and k-almost gradient Ricci soliton on contact metric manifold. First, we prove that if a compact K-contact metric is a k-almost gradient Ricci soliton, then it is isometric to a unit sphere $S^{2n+1}$. Next, we extend this result on a compact k-almost Ricci soliton when the flow vector field X is contact. Finally, we study some special types of k-almost Ricci solitons where the potential vector field X is point wise collinear with the Reeb vector field ${\xi}$ of the contact metric structure.

The Closed-form Expressions of Gravity, Magnetic, Gravity Gradient Tensor, and Magnetic Gradient Tensor Due to a Rectangular Prism (직육면체 프리즘에 의한 중력, 자력, 중력 변화율 텐서 및 자력 변화율 텐서의 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • The closed-form expressions of gravity, magnetic, gravity gradient tensor, and magnetic gradient tensor due to a rectangular prism are derived. The vertical gravity is derived via triple integration of a rectangular prism in Cartesian coordinates, and the two horizontal components of vector gravity are then derived via cycle permutation of the axis variables of vertical gravity through the axial symmetry of the rectangular prism. The gravity gradient tensor is obtained by differentiating the vector gravity with respect to each coordinate. Using Poisson's relation, a vector magnetic field with constant magnetic direction can be obtained from the gravity gradient tensor. Finally, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to appropriate coordinates.