DOI QR코드

DOI QR Code

The Closed-form Expressions of Gravity, Magnetic, Gravity Gradient Tensor, and Magnetic Gradient Tensor Due to a Rectangular Prism

직육면체 프리즘에 의한 중력, 자력, 중력 변화율 텐서 및 자력 변화율 텐서의 반응식

  • Rim, Hyoungrea (Department of Earth Science Education, Pusan National University)
  • 임형래 (부산대학교 지구과학교육과)
  • Received : 2020.01.13
  • Accepted : 2020.02.13
  • Published : 2020.02.28

Abstract

The closed-form expressions of gravity, magnetic, gravity gradient tensor, and magnetic gradient tensor due to a rectangular prism are derived. The vertical gravity is derived via triple integration of a rectangular prism in Cartesian coordinates, and the two horizontal components of vector gravity are then derived via cycle permutation of the axis variables of vertical gravity through the axial symmetry of the rectangular prism. The gravity gradient tensor is obtained by differentiating the vector gravity with respect to each coordinate. Using Poisson's relation, a vector magnetic field with constant magnetic direction can be obtained from the gravity gradient tensor. Finally, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to appropriate coordinates.

직육면체 프리즘에 대한 중력, 자력, 중력 변화율 텐서 및 자력 변화율 텐서 반응식을 정리하였다. 직교 좌표계에서 직육면체 프리즘에 대한 삼중 적분으로 수직 중력을 유도하고, 직육면체의 축 방향 대칭성을 이용하여 순환 치환으로 두 개의 수평 중력 성분을 유도한다. 벡터 중력을 각 성분 별로 미분하여 중력 변화율 텐서를 유도한다. 포아송(Poisson) 관계식을 이용하면 일정한 방향으로 자화된 벡터 자력은 중력 변화율 텐서로부터 얻어진다. 벡터 자력을 각 방향으로 미분하여 최종적으로 자력 변화율 텐서를 유도하였다.

Keywords

References

  1. Blakely, R. J., 1996, Potential theory in gravity and magnetic applications, Cambridge University Press.
  2. Du, J., Chen, C., Lesur, V., Lane, R., and Wang, H., 2015, Magnetic potential, vector and gradient tensor fields of a tesseroid in geocentric spherical coordinate system, Geophys. J. Int., 201(3), 1997-2007.
  3. Gokula, A. P., and Sastry, R. G., 2019, Gravity gradient tensor of a vertical pyramid model of flat top and bottom with depth-wise parabolic density variation, Geophysics, 84(6), G93-G112. https://doi.org/10.1190/geo2017-0833.1
  4. Heath, P. J., Greenhalgh, S., and Direen, N. G., 2005, Modelling gravity and magnetic gradient tensor response for exploration within the regolith, Explor. Geophys., 36(4), 357-364. https://doi.org/10.1071/EG05357
  5. Li, X., and Chouteau, M., 1998, Three-dimensional gravity modeling in all space, Surv. Geophys., 19(4), 339-368. https://doi.org/10.1023/A:1006554408567
  6. Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data, Geophysics, 61(2), 394-408. https://doi.org/10.1190/1.1443968
  7. Nagy, D., 1966, The gravitational attraction of a right rectangular prism, Geophysics, 31(2), 362-371. https://doi.org/10.1190/1.1439779
  8. Okabe, M., 1979, Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies, Geophysics, 44(4), 730-741. https://doi.org/10.1190/1.1440973
  9. Park, Y., Rim, H., Lim, M., and Chung, H., 2017, An inversion package for interpretation of microgravity data, Geophys. and Geophys. Explor., 20(4), 226-231. (in Korean with English abstract) https://doi.org/10.7582/GGE.2017.20.4.226
  10. Plouff, D., 1976, Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections, Geophysics, 41(4), 727-741. https://doi.org/10.1190/1.1440645
  11. Ren, Z., Chen, C., Tang, J., Chen, H., Hu, S., Zhou, C., and Xiao, X., 2017, Closed-form formula of magnetic gradient tensor for a homogenous polyhedral magnetic target: A tetrahedral grid example, Geophysics, 82(6), WB21-WB28. https://doi.org/10.1190/geo2016-0470.1
  12. Ren, Z., Chen, H., Chen, C., Zhong, Y., and Tang, J., 2019, New analytical expression of the magnetic gradient tensor for homogeneous polyhedrons, Geophysics, 84(3), A31-A35. https://doi.org/10.1190/geo2018-0741.1
  13. Rim, H., and Li, Y., 2016, Gravity gradient tensor due to a cylinder, Geophysics, 81(4), G59-G66. https://doi.org/10.1190/geo2015-0699.1
  14. Sorokin, L. V., 1951, Gravimetry and gravimetrical prospecting, State Technology Publishing. (in Russian)
  15. Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1991, Applied Geophysics 2nd ed., Cambridge University Press.