CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

CHOHONG MIN^1 AND GANGJOON YOON 2†

¹DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA *E-mail address*: chohong@ewha.ac.kr

²INSTITUTE OF MATHEMATICAL SCIENCES, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA *E-mail address*: gangjoon@gmail.com

ABSTRACT. The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition.

Using the L^2 -orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

1. INTRODUCTION

The Hodge-Helmholtz decomposition theorem [6] states that any smooth vector field U^* can be decomposed into the sum of a gradient field ∇p and a divergence-free vector field U. The decomposition is unique and orthogonal in L^2 . The Hodge projection of a vector field is defined as the divergence-free component in its Hodge-Helmholtz decomposition.

One of the main applications of the decomposition is the incompressible fluid flow, whose phenomenon is represented by the Navier-Stokes equations. Consisting of the conservation equation of momentum and the state equation of divergence-free condition, the equations can be described by a convection-diffusion equation with the Hodge projection applied at every

Received by the editors October 10 2014; Accepted November 16 2014; Published online November 28 2014. 2000 *Mathematics Subject Classification*. 65N06.

Key words and phrases. Hodge-Helmholtz decomposition, Finite volume method, Poisson equation, Gibou-Min method.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2009-0093827).

[†] Corresponding author.

moment. Chorin's seminal approximation [3] for the fluid flow first solves the convectiondiffusion equation in a usual manner, and then applies the Hodge projection. Other successful fluid solvers such as Kim-Moin's [7], Bell *et al.*'s [1], Gauge method [8] are in the same direction as Chorin's.

The Hodge-Helmholtz decomposition $U^* = U + \nabla p$ in a domain Ω can be implemented through the Poisson equation $-\Delta p = -\nabla \cdot U^*$. In a bounded domain, the equation needs to be supplied with boundary condition. There are two types fluid boundary conditions. One is the non-penetration boundary condition, $U \cdot n = 0$ on $\Gamma = \partial \Omega$, and the other is the free boundary condition, $p = \sigma \kappa$ on Γ [10]. The free boundary condition is, in other words, the Dirichlet boundary condition of the Poisson equation, and the non-penetration boundary condition corresponds to the Neumann boundary condition, $\frac{\partial p}{\partial n} = U^* \cdot n$ on Γ .

To approximate the Poisson equation, we consider the standard finite volume method. A standard finite difference/volume method for the Poisson equation with the Neumann boundary condition was introduced by Purvis and Burkhalter [11]. Though implemented in uniform grid, the method can handle arbitrarily shaped domains. It is a simple modification of the standard five-point finite difference method, and it constitutes a five-banded sparse linear system that is diagonally dominant, symmetric and positive semi-definite. Due to these nice properties, the linear system can be efficiently solved by the Conjugate Gradient method with various efficient ILU preconditioners.

The Gibou-Min method [4, 9] is an application of the Purvis-Burkhalter method on the Hodge-Helmholtz decomposition. In implementing the Hodge decomposition, the Neumann boundary condition takes the divergence form $\frac{\partial p}{\partial n} = \nabla \cdot U^*$.

Using the orthogonality condition between the error $U - U^h$ and the consistency of the method, the method was proved in [13] to provide 1.5 order of accuracy in approximating the divergence-free vector field U of the Hodge projection.

In this work, we estimate the convergence of the pressure p given in the Hogde-Helmholtz decomposition. Using the orthogonality, we obtain the estimate $||Gp - Gp^h||_{L^2} = O(h^{1.5})$ for the gradient of the pressure error. On introducing a discrete version of the Poincare inequality, we derive $||p - p^h|| = O(h_{min}^{-0.5} \cdot h^2)$ for h_{min} the smallest distance from grid nodes inside to the boundary. Our estimate reads that for many domains with $h_{min} = O(h^2)$, for instance, domains with general intersection property introduced in [12], the pressure convergence is O(h). According to our numerical tests, even though the estimate $||U - U^h||_{L^2} = O(h^{1.5})$ is tight, however, the estimate does not meet the observed order $||p - p^h|| = O(h^2)$. We put it off to future research to improve the estimate.

2. NUMERICAL METHOD

In this section, we briefly review the Gibou-Min method [4, 9] for the Hodge decomposition with the non-penetration boundary condition. Given a vector field U^* in a bounded and connected domain Ω , the following Poisson equation is solved for scalar p with the Neumann boundary condition.

$$\begin{cases} -\Delta p = -\nabla \cdot U^* & \text{in } \Omega \\ \frac{\partial p}{\partial n} = U^* \cdot n & \text{on } \Gamma \end{cases}$$
(2.1)

Then a vector field U, which is defined as $U = U^* - \nabla p$, is the desired Hodge projection of U^* that satisfies the divergence-free condition $\nabla \cdot U = 0$ in Ω , and the non-penetration boundary condition $U \cdot n = 0$ on Γ . The Gibou-Min method samples the vector fields and scalar field on the Marker-and-Cell (MAC) staggered grid [5]. Let $h\mathbb{Z}^2$ denote the uniform grid in \mathbb{R}^2 with step size h. For each grid node $(x_i, y_j) \in h\mathbb{Z}^2$, C_{ij} denotes the rectangular control volume centered at the node, and its four edges are denoted by $E_{i\pm\frac{1}{\alpha},j}$ and $E_{ij\pm\frac{1}{\alpha}}$ as follows.

$$\begin{array}{rclcrcl} C_{ij} & := & [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] & \times & [y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}] \\ E_{i\pm\frac{1}{2}j} & := & x_{i\pm\frac{1}{2}} & \times & [y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}] \\ E_{ij\pm\frac{1}{2}} & := & [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] & \times & y_{j\pm\frac{1}{2}} \end{array}$$

Based on the MAC configuration, we define the node set and the edge sets.

Definition 2.1 (Node and edge sets). By $\Omega^h := \{(x_i, y_j) \in h\mathbb{Z}^2 | C_{ij} \cap \Omega \neq \emptyset\}$ we denote the set of nodes whose control volumes intersecting the domain. In the same way, we define the edge sets by $E_x^h := \{(x_{i+\frac{1}{2}}, y_j) | E_{i+\frac{1}{2}, j} \cap \Omega \neq \emptyset\}$ and $E_y^h := \{(x_i, y_{j+\frac{1}{2}}) | E_{i,j+\frac{1}{2}} \cap \Omega \neq \emptyset\}$, and then $E^h := E_x^h \cup E_y^h$.

By the standard central finite differences, a discrete gradient operator is defined.

Definition 2.2 (Discrete gradient). Given $p: \Omega^h \to \mathbb{R}$, its gradient $Gp: E^h \to \mathbb{R}$ is defined as

$$(G^{x}p)_{i+\frac{1}{2},j} = \frac{p_{i+1,j} - p_{ij}}{h}$$
$$(G^{y}p)_{i,j+\frac{1}{2}} = \frac{p_{ij+1} - p_{ij}}{h}.$$

Whenever $E_{i+\frac{1}{2},j} \cap \Omega \neq \emptyset$, $C_{ij} \cap \Omega \neq \emptyset$ and $C_{i+1,j} \cap \Omega \neq \emptyset$, since $E_{i+\frac{1}{2},j} \subset C_{ij}, C_{i+1,j}$. Hence the above definition is well posed for $G^x p$, and so is for $G^y p$. Discrete gradient was simply defined by the finite differences, however discrete gradient can not be defined so. For each $(x_i, y_j) \in \Omega^h$, its four neighboring edges may not be in E^h , since $C_{ij} \cap \Omega \neq \emptyset$ neither imply $E_{i\pm\frac{1}{2},j} \cap \Omega \neq \emptyset$ nor $E_{i,j\pm\frac{1}{2}} \cap \Omega \neq \emptyset$. A proper definition comes from the following identity.

$$\int_{C_{ij}\cap\Omega} \nabla \cdot U \, dx = \int_{\partial(C_{ij}\cap\Omega)} U \cdot \vec{n} \, ds$$
$$0 = \int_{\partial C_{ij}\cap\Omega} U \cdot \vec{n} \, ds + \int_{C_{ij}\cap\Gamma} U \cdot \vec{n} \, ds \qquad (2.2)$$

With the non-penetration boundary condition $U \cdot \vec{n} = 0$, the identity represents an integral value of the divergence by a line integral over the fraction of edges. To measure the fraction, the following Heaviside functions are defined on the edge set.

Definition 2.3 (Heaviside function). For each edge,

$$H_{i+\frac{1}{2},j} = \frac{\operatorname{length}\left(E_{i+\frac{1}{2},j} \cap \Omega\right)}{\operatorname{length}\left(E_{i+\frac{1}{2},j}\right)}, \text{ and } H_{i,j+\frac{1}{2}} = \frac{\operatorname{length}\left(E_{i,j+\frac{1}{2}} \cap \Omega\right)}{\operatorname{length}\left(E_{i,j+\frac{1}{2}}\right)}.$$

Note that $H_{i+\frac{1}{2},j}$, $H_{i,j+\frac{1}{2}} \in [0,1]$. Its value 1 implies that the edge is totally inside the domain, and value 0 implies completely outside. Using the Heaviside function, now we define discrete divergence operator.

Definition 2.4 (Discrete divergence). Given $U = (u, v) : E^h \to \mathbb{R}$, its discrete divergence $DU : \Omega^h \to \mathbb{R}$ is defined as

$$\begin{aligned} (DU)_{ij} &= \left(u_{i+\frac{1}{2},j}H_{i+\frac{1}{2},j} - u_{i-\frac{1}{2},j}H_{i-\frac{1}{2},j} \right) \cdot h \\ &+ \left(v_{i,j+\frac{1}{2}}H_{i,j+\frac{1}{2}} - v_{i,j-\frac{1}{2}}H_{i,j-\frac{1}{2}} \right) \cdot h. \end{aligned}$$

Note that the calculation of the discrete divergence involves the vector field only in E^h . The edges not in E^h , whose Heaviside function values are zero, are ignored in the calculation.

Given a vector field $U^* : \Omega \cup \Gamma \to \mathbb{R}^2$, we define a discrete vector field $U^* = (U_x^*, U_y^*)$ on E^h as

$$(U_x^*)_{i+\frac{1}{2},j} := \frac{1}{H_{i+\frac{1}{2},j}h} \int\limits_{E_{i+\frac{1}{2},j}^h \cap \Omega} U_x^*(x_{i+\frac{1}{2}},y) dy$$

and

$$(U_y^*)_{i,j+\frac{1}{2}} := \frac{1}{H_{i,j+\frac{1}{2}}h} \int_{E_{i,j+\frac{1}{2}}^h \cap \Omega} U_y^*(x,y_{j+\frac{1}{2}}) dy$$

With the vector field $U^* : E^h \to \mathbb{R}^2$, the Gibou-Min method computes a vector field $U^h : E^h \to \mathbb{R}$ and a scalar field $p^h : \Omega^h \to \mathbb{R}$ such that $DU^h = 0$ in Ω^h and $U^* = U^h + Gp^h$ in Ω^h . Substituting U^h with $U^* - Gp^h$ in $DU^h = 0$, we have the equation for p^h ,

$$-DGp^h = -DU^* \text{ in } \Omega^h. \tag{2.3}$$

After p^h is obtained by solving the above linear system, the solenoidal vector field $U^h = U^* - Gp^h$ is calculated.

3. Convergence analysis for the Hodge projection U^h

From now on, we consider the convergence for the Gibou-Min method. Let $L^h := DG$ denote its associated linear operator, then it maps a discrete function $p^h : \Omega^h \to \mathbb{R}$ to another function $L^h p^h : \Omega^h \to \mathbb{R}$ such that

$$(L^{h}p^{h})_{ij} = H_{i+\frac{1}{2},j} \left(p^{h}_{i+1,j} - p^{h}_{ij} \right) - H_{i-\frac{1}{2},j} \left(p^{h}_{ij} - p^{h}_{i-1j} \right) + H_{ij+\frac{1}{2}} \left(p^{h}_{ij+1} - p^{h}_{ij} \right) - H_{ij-\frac{1}{2}} \left(p^{h}_{ij} - p^{h}_{ij-1} \right) ,$$

$$(3.1)$$

for each $(x_i, y_j) \in \Omega^h$.

Most of lemmas and theorems in this section will be just stated without proofs, which we refer to [13] for details, for our main theme of this work is to introduce the convergence of the gradient in the Hodge-Helmholtz decomposition.

In this setting, we have that $Ker(L^h) = span\{1_{\Omega^h}\}$ and for a vector field $U^* : E^h \to \mathbb{R}$, $-L^h p^h = -DU^*$ has a unique solution $p^h \in \{1_{\Omega^h}\}^{\perp}$.

To analyze the convergence for the scheme, we introduce two inner products defined on E^h and Ω^h .

Definition 3.1. Let E^h and Ω^h be the sets of edges and grid nodes, respectively.

(i) (Inner product between vector fields) Given two vector fields $U^1, U^2 : E^h \to \mathbb{R}$, their inner product is defined as

$$\left\langle U^1, U^2 \right\rangle_{E^h} := h^2 \sum_{i,j} H_{i+\frac{1}{2},j} u^1_{i+\frac{1}{2},j} u^2_{i+\frac{1}{2},j} + h^2 \sum_{i,j} H_{i,j+\frac{1}{2}} v^1_{i,j+\frac{1}{2}} v^2_{i,j+\frac{1}{2}}$$

(ii) (Inner product between scalar fields) Given two discrete functions $p^1, p^2 : \Omega^h \to \mathbb{R}$, their inner product is defined as

$$\left\langle p^1,p^2\right\rangle_{\Omega^h}:=h^2\sum_{i,j}p^1_{i,j}\cdot p^2_{i,j}$$

With the two inner product spaces, we can see in the following lemma that G is the adjoint operator of $-\frac{1}{h^2}D$.

Lemma 3.2 (Integration-by-parts). Let G and D be the discrete gradient and divergence operators, respectively. Then for any discrete function p on Ω^h and vector field U on E^h , we have

$$\langle Gp, U \rangle_{E^h} = - \left\langle p, \frac{1}{h^2} DU \right\rangle_{\Omega^h}.$$

The integration-by-parts leads to a discrete version of the Helmholtz decomposition.

Theorem 3.3. Given vector field $U^* : E^h \to \mathbb{R}$, there exists a unique $p^h \in \{1_{\Omega^h}\}^{\perp}$ such that $DGp = DU^*$. Therefore, the decomposition

$$U^* = U^h + Gp^h$$
 with $DGp^h = DU^*$

is unique. Furthermore, the decomposition is orthogonal, i.e, $\langle U^h, Gp^h \rangle_{\Omega^h} = 0$.

C. MIN AND G. YOON

Now, we are ready to analyze the Gibou-Min method. In the remainder of this work, by $p: \Omega \to \mathbb{R}$ and $U = (u, v) : \Omega \to \mathbb{R}^2$, we denote the analytic solutions of the Helmholtz decomposition $U^* = U + \nabla p$ for the given vector field $U^* = (u^*, v^*) : \Omega \to \mathbb{R}^2$. Also let $p^h: \Omega^h \to \mathbb{R}$ and $U^h: E^h \to \mathbb{R}$ denote the numerical solutions for the Gibou-Min method for the given $U^*: E^h \to \mathbb{R}$.

Definition 3.4. The convergence error $e^h : \Omega^h \to \mathbb{R}$ and consistency error $c^h : \Omega^h \to \mathbb{R}$ are defined as $e^h := p - p^h$ and $c^h := L^h (p - p^h)$.

The consistency error c^h is given as a divergence of some vector field, $c^h = \frac{1}{h}Dd^h$ with $d^h: E^h \to \mathbb{R}$ defined as

$$\begin{split} d_{i+\frac{1}{2},j} = & \frac{1}{H_{i+\frac{1}{2},j}} \int_{E_{i+\frac{1}{2},j} \cap \Omega} \left[\frac{p_{i+1,j} - p_{ij}}{h} - u^*(x_{i+\frac{1}{2}}, y_j) \right] dy \\ &+ \frac{1}{H_{i+\frac{1}{2},j}} \int_{E_{i+\frac{1}{2},j} \cap \Omega} \left[u^*(x_{i+\frac{1}{2}}, y_j) - \frac{\partial p}{\partial x} \left(x_{i+\frac{1}{2}}, y_j \right) \right] dy, \end{split}$$

and $d_{i,j+\frac{1}{2}}$ is defined in the same manner. We can estimate the vector d^h for which $c^h = \frac{1}{h}Dd^h$. For each *i* and *j*, the Taylor series expansion shows

$$d_{i+\frac{1}{2},j} = \begin{cases} O(h^3), & \text{if } H_{i+\frac{1}{2},j} = 1, \\ O(h^2), & \text{if } 0 < H_{i+\frac{1}{2},j} < 1 \end{cases}$$
(3.2)

and we have the same result for $d_{i,j+\frac{1}{2}}$.

Theorem 3.5. Given a smooth vector field U^* , let U be its analytic Hodge projection and U^h the numerical approximation from the Gibou-Min method,

$$U^* = U + \nabla p \quad and \quad U^* = U^h + Gp^h \quad (p^h \in \{1_{\Omega^h}\}^\perp and \ L^h p^h = DU^*).$$
 (3.3)

Then we have

(i)
$$||U - U^h|| = O(h^{1.5}).$$

(ii) $||G(e^h)|| = ||Gp - Gp^h|| = O(h^{1.5}).$

Proof. From the decompositions (3.3), we have $U - U^h = (U^* - \nabla p) - (U^* - Gp^h)$. Since G is the standard central finite difference operator, $\nabla p - Gp = O(h^2)$. Hence, the estimate (i) follows from (ii) and it suffices to show $||Gp - Gp^h|| = O(h^{1.5})$. Lemma 3.2 shows

$$\left\langle \frac{1}{h}d^{h} - G(p - p^{h}), G(p - p^{h}) \right\rangle_{E^{h}} = -\frac{1}{h^{2}} \left\langle \frac{1}{h}Dd^{h} - L^{h}(p - p^{h}), p - p^{h} \right\rangle_{\Omega^{h}} = 0$$
 (3.4)

Here we used the facts that $DG = L^h$ and $\frac{1}{h}Dd^h = c^h = L^h e^h$. Equation (3.4) means that $\frac{1}{h}d^h - G(p - p^h)$ is orthogonal to $G(p - p^h)$, which implies

$$\left\|\frac{1}{h}d^{h}\right\| = \left\|\frac{1}{h}d^{h} - G(p-p^{h})\right\|_{E^{h}}^{2} + \left\|G(p-p^{h})\right\| \ge \left\|G(p-p^{h})\right\|.$$

310

On the other hand, the pointwise estimate of d^h given in (3.2) gives

$$\begin{split} \left\langle \frac{1}{h} d^{h}, \frac{1}{h} d^{h} \right\rangle_{E^{h}} &= \sum_{ij} H_{i+\frac{1}{2},j} \left(d_{i+\frac{1}{2},j} \right)^{2} + \sum_{ij} H_{i,j+\frac{1}{2}} \left(d_{i,j+\frac{1}{2}} \right)^{2} \\ &= \sum_{H_{i+\frac{1}{2},j}, H_{i,j+\frac{1}{2}} = 1} O(h^{6}) + \sum_{0 < H_{i+\frac{1}{2},j}, H_{i,j+\frac{1}{2}} < 1} O(h^{4}) \\ &= O(h^{6}) O(h^{-2}) + O(h^{4}) O(h^{-1}) = O(h^{3}). \end{split}$$

Here, we used the fact that the number of inside edges, $H_{i+\frac{1}{2},j} = 1$ and $H_{i,j+\frac{1}{2}} = 1$, grows quadratically so that it becomes $O(h^{-2})$, and that of edges near the boundary is $O(h^{-1})$. Consequently, we have $||Gp - Gp^h|| = O(h^{1.5})$, which completes the proof.

4. Convergence analysis for pressure p

In order to estimate the convergence error using the gradient estimation, we need the Poincare-Friedrichs inequality for piecewise constant functions as follows. Let $D \in \mathbb{R}^2$ be a bounded and connected polygonal domain and \mathcal{T} a simplicial triangulation of D. By $\mathcal{E}^i(\mathcal{T})$, we denote the set of the interior edges of \mathcal{T} . For an interior edge e shared by two triangles T_1 and T_2 in \mathcal{T} , we define a jump [[w]] across e as

$$[[w]] = w_1 n_1 + w_2 n_2$$

where n_j is the outer normal unit vector of T_j and $w_j = w j_{T_j}$ for j = 1, 2. Then we have the Poincare-Friedrichs inequality for piecewise constant functions with respect to \mathcal{T} ([2, Lemma 10.6.6]).

Lemma 4.1. There exists a constant C > 0 depending only on the minimum angle of \mathcal{T} such that

$$\|c\|_{L^{2}(D)} \leq C \left[\left| \int_{D} c dx \right| + \left(\sum_{e \in \mathcal{E}^{i}(\mathcal{T})} |e|^{-1} \|[c]\|_{L^{2}(e)}^{2} \right)^{1/2} \right]$$

for any piecewise constant function c with respect to T.

Theorem 4.2. Let $u : \Omega^h \to \mathbb{R}$ be a discrete function with

$$\int_{\Omega^h} u(P)dP = \sum_{P \in \Omega^h} u(P)vol(\Omega_P) = 0, \qquad (\Omega_P = C_P \cap \Omega).$$

Then there exists a constant C independent of the step size h such that

$$C\frac{h_{min}}{h} \|u\|_{L^2(\Omega^h)}^2 \le \sum_{Q \in E_h} \left(\frac{u(Q^+) - u(Q^-)}{h}\right)^2 H_Q h^2.$$
(4.1)

Proof. For each (x_i, y_j) , we take a control volume $D_{ij} \subset [x_i - \frac{h}{2}, x_i + \frac{h}{2}] \times [y_j - \frac{h}{2}, y_j + \frac{h}{2}]$ as D_{ij} is a union of triangles such that $vol(D_{ij}) = vol(\Omega_{ij})$ and

$$D_{ij} \cap D_{i+1,j} = L_{i+\frac{1}{2},j}, \quad D_{ij} \cap D_{i,j+1} = L_{i,j+\frac{1}{2}}$$

and any angle θ of the triangles is bounded as

$$\theta_1 \le \theta \le \theta_2$$

where θ_1 and θ_2 are independent of h. In this setting, we can see that for every edge e, either $e \cap E_Q = e$ for some $Q \in E^h$ or $|e \cap E_Q| = 0$ for all $Q \in E^h$. From this setting, the number of triangles in D_{ij} sharing the edge $L_{i+\frac{1}{2},j}$ is $O((hH_{i+\frac{1}{2},j})/h_{min})$ where $\left|L_{i+\frac{1}{2},j}\right| = hH_{i+\frac{1}{2},j}$ and $h_{min} = \min\{\left|L_{i\pm\frac{1}{2},j}\right|, \left|L_{i,j\pm\frac{1}{2}}\right|\}$.

Now, we define a piecewise constant function u_c as $u_c = u_{ij}$ on D_{ij} . Then we have

$$\int_{\bigcup D_{ij}} |u_c(x)|^2 dx = \int_{\Omega^h} |u(P)|^2 dP \quad \text{and} \quad \int_{\bigcup D_{ij}} u_c(x) dx = \int_{\Omega^h} u(P) dP = 0.$$

We note that $\|[[u_c]]\|_{L^2(e)} = 0$ if $|e \cap L_{i+\frac{1}{2},j}| = 0$ and $\|[[u_c]]\|_{L^2(e)}^2 = |e|(u_{i+,j} - u_{ij})^2$ if $|e \cap L_{i+\frac{1}{2},j}| = |e|$. Applying u_c to Lemma 4.1, we verify that there exists a constant C independent of h such that

$$\int_{\bigcup D_{ij}} |u_c(x)|^2 dx \le C \sum_{Q \in E_h} (u_c(Q^+) - u_c(Q^-))^2 \frac{H_Q h}{h_{min}}$$
$$= C \frac{h}{h_{min}} \sum_{Q \in E_h} \left(\frac{u(Q^+) - u(Q^-)}{h}\right)^2 H_Q h^2$$

which completes the proof.

We note that from the argument used for the proof of Theorem 4.2, we can see that we have an equality with $h/h_{min} = 1$ in the case when there are two positive constants C_1 and C_2 independent of h such that

$$C_1 \le \frac{H_{i \pm \frac{1}{2}, j}}{H_{i \pm \frac{1}{2}, j} + H_{i, j \pm \frac{1}{2}}} \le C_2, \quad \text{for all } (x_i, y_j) \in \Omega^h.$$

Since p+c is also an analytic solution of equation (2.1) for an analytic solution p and a constant c, we may assume that

$$\sum_{P \in \Omega^h} \left(p - p^h \right) (P) vol(\Omega_P) = 0$$

for the numerical solution p_h .

Theorem 4.3 (Convergence of pressure). Let p be an analytic solution to (2.1) and let p^h be the numerical solution to (3.1) such that

$$\sum_{P \in \Omega^h} \left(p - p^h \right) (P) vol(\Omega_P) = 0.$$

Then we have

$$\|p - p^h\|_{L^2(\Omega^h)} \le \frac{O(h^2)}{\sqrt{h_{min}}}$$

with $h_{min} = \min\{\left|L_{i\pm\frac{1}{2},j}\right|, \left|L_{i,j\pm\frac{1}{2}}\right|\}.$

Proof. Applying the convergence error $e^h = p - p^h$ to Theorem 4.2, we have

$$\|e^{h}\|_{L^{2}(\Omega^{h})}^{2} \leq C\frac{h}{h_{min}} \sum_{Q \in E_{h}} \left(\frac{e^{h}(Q^{+}) - e^{h}(Q^{-})}{h}\right)^{2} H_{Q}h^{2} = C\frac{h}{h_{min}} \|Ge^{h}\|^{2}.$$

On the other hand, we showed $||Ge^h||^2 \le O(h^3)$ in Theorem 3.5 (ii). Consequently, we have the convergence accuracy as

$$|e^h||^2_{L^2(\Omega^h)} \le \frac{O(h^4)}{h_{min}}$$

which shows the theorem.

We observed in [12] that for many domains, however, we have $h_{min} = O(h^2)$ as h tends to zero.

Definition 4.4. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain. We say that Ω has the general intersection property if the cumulative distribution function $p(\nu)$ defined by

$$p(\nu) := |\{(x_i, y_j) \in \Omega_h : dist ((x_i, y_j), \Gamma_h) \le \nu\}|$$

$$(4.2)$$

is almost linear, i.e, $p(\nu) = O(h^{-2}\nu)$.

Many domains with smooth boundary as well as rectangular and circular shapes have the general intersection property. Note that when the domain Ω has the property, the set $\Omega_h^{\tau*}$ becomes empty as h tends to zero so that the threshold treatment works nothing.

Theorem 4.5. Let Ω be a bounded open domain with smooth boundary. Assume that Ω has the general intersection property. Then, for sufficiently small h, we have

$$||e^{h}(h)||_{L^{2}(\Omega^{h})} = ||p - p^{h}||_{L^{2}(\Omega^{h})} = O(h).$$

Proof. Assume that Ω has the general intersection property. Then, we have $h_{min} = O(h^2)$ as h tends to zero because $p(h^{\alpha}) = \emptyset(h^{\alpha-2}) < 1$ for any $\alpha > 1$. In this case, Theorem 4.3 implies

$$||p - p^h||_{L^2(\Omega^h)} \le \frac{O(h^2)}{\sqrt{h_{min}}} = O(h)$$

and it shows the theorem.

1	Г		1
			I

C. MIN AND G. YOON

5. NUMERICAL TEST

5.1. Two dimensional example. In $\Omega = \{(x, y) | x^2 + y^2 < 1\}$, we take a vector field U = (u, v) with $u(x, y) = -2xy + \frac{xy}{\sqrt{x^2+y^2}}$ and $v(x, y) = 3x^2 + y^2 - \frac{2x^2+y^2}{\sqrt{x^2+y^2}}$, and choose a scalar variable $p(x, y) = e^{x-y}$. Note that $U \cdot \vec{n} = 0$ on $\partial\Omega$ and $\nabla \cdot U = 0$ in Ω . The run of the Gibou-Min method on $U^* = U + \nabla p$ is reported in Table 1.

grid	$\left\ U-U^h\right\ _{L^2}$	order	$\left\ p - p^h \right\ _{L^2}$	order
40^{2}	6.67×10^{-3}		1.33×10^{-3}	
80^{2}	2.48×10^{-3}	1.42	2.49×10^{-4}	2.41
160^{2}	8.14×10^{-4}	1.60	6.59×10^{-5}	1.92
320^{2}	3.05×10^{-4}	1.41	1.32×10^{-5}	2.31
640^2	1.01×10^{-4}	1.58	3.73×10^{-6}	1.82

TABLE 1. Convergence order

FIGURE 1. Convergence order

5.2. Three dimensional example. In $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 < 1\}$, we take a vector field $U = (x^2z + 3y^2z, -2xyz, -x^3 - xy^2)$ and a scalar variable $p(x, y, z) = e^{x-y+z}$. Note that $U \cdot \vec{n} = 0$ on $\partial\Omega$ and $\nabla \cdot U = 0$ in Ω . The run of the Gibou-Min method on $U^* = U + \nabla p$ is reported in Table 2.

grid	$\left\ U - U^h \right\ _{L^2}$	order	$\left\ p - p^h \right\ _{L^2}$	order
20^{3}	1.11×10^{-2}		3.47×10^{-3}	
40^{3}	3.89×10^{-3}	1.51	7.21×10^{-4}	2.26
80^{3}	1.31×10^{-3}	1.57	1.53×10^{-4}	2.23
160^{3}	4.43×10^{-4}	1.56	3.50×10^{-5}	2.12

TABLE 2. Convergence order

6. CONCLUSION

In this work, we performed convergence analysis for the Gibou-Min method that calculates the Hodge-Helmholtz decomposition. Using the L^2 -orthogonality between the error vector $U - U^h$ and the consistency d^h , we proved the estimate $||U - U^h||_{L^2} = O(h^{1.5})$ and $||Gp - Gp^h||_{L^2} = O(h^{1.5})$ for the gradient of the pressure error, as well. We then introduced a discrete version of the Poincare inequality, which led us to the result $||p - p^h|| = O(h_{min}^{-0.5}h^2)$ with $h_{min} = \min\{|L_{i\pm\frac{1}{2},j}|, |L_{i,j\pm\frac{1}{2}}|\}$. Our estimate reads that for many domains with $h_{min} = O(h^2)$, for instance, domains with general intersection property, the pressure convergence is O(h). According to our numerical tests, even though the estimate $||U - U^h||_{L^2} = O(h^{1.5})$ is tight, however, the estimate does not meet the observed order $||p - p^h|| = O(h^2)$. We put it off to future research to improve the estimate.

REFERENCES

- J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), 257–283.
- [2] S.C. Brenner and L.R. Scott, *The Mathematical Theory of Finite Element Methods*, Springer-Verlag, New York, 2008.
- [3] A. Chorin, A numerical method for solving incompressible ciscous flow problems, J. Comput. Phys., 2 (1967), 12–26.
- [4] F. Gibou and C. Min, Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions, J. of Comput. Phys., 231 (2012), 3246–3263.
- [5] F. Harlow and J. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces, Physics of Fluids, 8 (1965), 2182–2189.
- [6] H. Helmholtz, On integrals of the hydrodynamic equations which correspond to vortex motions, Journal fur die reine und angewandte Mathematik, 55 (1858), 22–55.
- [7] J. Kim and P. Moin, Application of a Fractional-step Method to Incompressible Navier-Stokes Equations, J. Comput. Phys., 59 (1985), 308–323.
- [8] W. E. and J. G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci., 1 (2003), 317–332.
- Y.-T. Ng, C. Min and F. Gibou, An efficient fluid-solid coupling algorithm for single-phase flows, J. Comput. Phys., 228 (2009), 8807–8829.
- [10] C. Pozrikidis, Introduction to theoretical and computational fluid dynamics, Oxford university press, 1997.
- [11] J. W. Purvis and J. E. Burhalter, Prediction of critical Mach number for store configurations, AIAA J., 17 (1979), 1170–1177.
- [12] G. Yoon and C. Min, On treating grid nodes too near the boundary in Shortley-Weller method J. Comput. Phys., (2014), submitted.

C. MIN AND G. YOON

[13] G. Yoon, J. Park, and C. Min, *Convergence analysis on Gibou-Min method for the Hodge projection*, Communications in Mathematical Sciences, (2014), submitted.

316