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ABSTRACT. The Hodge-Helmholtz decomposition splits a vector field into the unique sum
of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a
bounded domain, a boundary condition needs to be supplied to the decomposition. The de-
composition with the non-penetration boundary condition is equivalent to solving the Poisson
equation with the Neumann boundary condition. The Gibou-Min method is an application of
the Poisson solver by Purvis and Burkhalter to the decomposition.

Using the L2-orthogonality between the error vector and the consistency, the convergence
for approximating the divergence-free vector field was recently proved to be O(h1.5) with step
size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To
the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of
the O(h) convergence for the scalar variable of the gradient field in a domain with general
intersection property.

1. INTRODUCTION

The Hodge-Helmholtz decomposition theorem [6] states that any smooth vector field U∗

can be decomposed into the sum of a gradient field ∇p and a divergence-free vector field U .
The decomposition is unique and orthogonal in L2. The Hodge projection of a vector field is
defined as the divergence-free component in its Hodge-Helmholtz decomposition.

One of the main applications of the decomposition is the incompressible fluid flow, whose
phenomenon is represented by the Navier-Stokes equations. Consisting of the conservation
equation of momentum and the state equation of divergence-free condition, the equations can
be described by a convection-diffusion equation with the Hodge projection applied at every
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moment. Chorin’s seminal approximation [3] for the fluid flow first solves the convection-
diffusion equation in a usual manner, and then applies the Hodge projection. Other successful
fluid solvers such as Kim-Moin’s [7], Bell et al.’s [1], Gauge method [8] are in the same
direction as Chorin’s.

The Hodge-Helmholtz decomposition U∗ = U + ∇p in a domain Ω can be implemented
through the Poisson equation−∆p = −∇·U∗. In a bounded domain, the equation needs to be
supplied with boundary condition. There are two types fluid boundary conditions. One is the
non-penetration boundary condition, U · n = 0 on Γ = ∂Ω, and the other is the free boundary
condition, p = σκ on Γ [10]. The free boundary condition is, in other words, the Dirich-
let boundary condition of the Poisson equation, and the non-penetration boundary condition
corresponds to the Neumann boundary condition, ∂p∂n = U∗ · n on Γ.

To approximate the Poisson equation, we consider the standard finite volume method. A
standard finite difference/volume method for the Poisson equation with the Neumann boundary
condition was introduced by Purvis and Burkhalter [11]. Though implemented in uniform grid,
the method can handle arbitrarily shaped domains. It is a simple modification of the standard
five-point finite difference method, and it constitutes a five-banded sparse linear system that is
diagonally dominant, symmetric and positive semi-definite. Due to these nice properties, the
linear system can be efficiently solved by the Conjugate Gradient method with various efficient
ILU preconditioners.

The Gibou-Min method [4, 9] is an application of the Purvis-Burkhalter method on the
Hodge-Helmholtz decomposition. In implementing the Hodge decomposition, the Neumann
boundary condition takes the divergence form ∂p

∂n = ∇ · U∗.
Using the orthogonality condition between the error U − Uh and the consistency of the

method, the method was proved in [13] to provide 1.5 order of accuracy in approximating the
divergence-free vector field U of the Hodge projection.

In this work, we estimate the convergence of the pressure p given in the Hogde-Helmholtz
decomposition. Using the orthogonality, we obtain the estimate

∥∥Gp−Gph∥∥
L2 = O

(
h1.5

)
for the gradient of the pressure error. On introducing a discrete version of the Poincare in-
equality, we derive

∥∥p− ph∥∥ = O
(
h−0.5
min · h2

)
for hmin the smallest distance from grid nodes

inside to the boundary. Our estimate reads that for many domains with hmin = O(h2), for in-
stance, domains with general intersection property introduced in [12], the pressure convergence
is O(h). According to our numerical tests, even though the estimate

∥∥U − Uh∥∥
L2 = O

(
h1.5

)
is tight, however, the estimate does not meet the observed order

∥∥p− ph∥∥ = O
(
h2
)
. We put

it off to future research to improve the estimate.

2. NUMERICAL METHOD

In this section, we briefly review the Gibou-Min method [4, 9] for the Hodge decomposi-
tion with the non-penetration boundary condition. Given a vector field U∗ in a bounded and
connected domain Ω, the following Poisson equation is solved for scalar p with the Neumann
boundary condition.



CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD 307

{
−∆p = −∇ · U∗ in Ω

∂p
∂n = U∗ · n on Γ

(2.1)

Then a vector field U , which is defined as U = U∗ − ∇p, is the desired Hodge projection
of U∗ that satisfies the divergence-free condition ∇ · U = 0 in Ω, and the non-penetration
boundary condition U · n = 0 on Γ. The Gibou-Min method samples the vector fields and
scalar field on the Marker-and-Cell (MAC) staggered grid [5]. Let hZ2 denote the uniform grid
in R2 with step size h. For each grid node (xi, yj) ∈ hZ2, Cij denotes the rectangular control
volume centered at the node, and its four edges are denoted by Ei± 1

2
,j and Eij± 1

2
as follows.

Cij := [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]

Ei± 1
2
j := xi± 1

2
× [yj− 1

2
, yj+ 1

2
]

Eij± 1
2

:= [xi− 1
2
, xi+ 1

2
] × yj± 1

2

Based on the MAC configuration, we define the node set and the edge sets.

Definition 2.1 (Node and edge sets). By Ωh :=
{

(xi, yj) ∈ hZ2|Cij ∩ Ω 6= ∅
}

we denote the
set of nodes whose control volumes intersecting the domain. In the same way, we define the
edge sets by Ehx :=

{
(xi+ 1

2
, yj)|Ei+ 1

2
,j ∩ Ω 6= ∅

}
and Ehy :=

{
(xi, yj+ 1

2
)|Ei,j+ 1

2
∩ Ω 6= ∅

}
,

and then Eh := Ehx ∪ Ehy .

By the standard central finite differences, a discrete gradient operator is defined.

Definition 2.2 (Discrete gradient). Given p : Ωh → R, its gradient Gp : Eh → R is defined as

(Gxp)i+ 1
2
,j =

pi+1,j − pij
h

(Gyp)i,j+ 1
2

=
pij+1 − pij

h
.

Whenever Ei+ 1
2
,j ∩ Ω 6= ∅, Cij ∩ Ω 6= ∅ and Ci+1,j ∩ Ω 6= ∅, since Ei+ 1

2
,j ⊂ Cij , Ci+1,j .

Hence the above definition is well posed for Gxp, and so is for Gyp. Discrete gradient was
simply defined by the finite differences, however discrete gradient can not be defined so. For
each (xi, yj) ∈ Ωh, its four neighboring edges may not be in Eh, since Cij ∩ Ω 6= ∅ neither
imply Ei± 1

2
,j ∩ Ω 6= ∅ nor Ei,j± 1

2
∩ Ω 6= ∅. A proper definition comes from the following

identity. ∫
Cij∩Ω

∇ · U dx =

∫
∂(Cij∩Ω)

U · ~n ds

0 =

∫
∂Cij∩Ω

U · ~n ds+

∫
Cij∩Γ

U · ~n ds (2.2)
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With the non-penetration boundary condition U · ~n = 0, the identity represents an integral
value of the divergence by a line integral over the fraction of edges. To measure the fraction,
the following Heaviside functions are defined on the edge set.

Definition 2.3 (Heaviside function). For each edge,

Hi+ 1
2
,j =

length
(
Ei+ 1

2
,j ∩ Ω

)
length

(
Ei+ 1

2
,j

) , and Hi,j+ 1
2

=
length

(
Ei,j+ 1

2
∩ Ω

)
length

(
Ei,j+ 1

2

) .

Note that Hi+ 1
2
,j , Hi,j+ 1

2
∈ [0, 1]. Its value 1 implies that the edge is totally inside the

domain, and value 0 implies completely outside. Using the Heaviside function, now we define
discrete divergence operator.

Definition 2.4 (Discrete divergence). Given U = (u, v) : Eh → R, its discrete divergence
DU : Ωh → R is defined as

(DU)ij =
(
ui+ 1

2
,jHi+ 1

2
,j − ui− 1

2
,jHi− 1

2
,j

)
· h

+
(
vi,j+ 1

2
Hi,j+ 1

2
− vi,j− 1

2
Hi,j− 1

2

)
· h.

Note that the calculation of the discrete divergence involves the vector field only in Eh. The
edges not in Eh, whose Heaviside function values are zero, are ignored in the calculation.

Given a vector field U∗ : Ω ∪ Γ → R2, we define a discrete vector field U∗ = (U∗x , U
∗
y ) on

Eh as

(U∗x)i+ 1
2
,j :=

1

Hi+ 1
2
,jh

∫
Eh

i+1
2 ,j
∩Ω

U∗x(xi+ 1
2
, y)dy

and

(U∗y )i,j+ 1
2

:=
1

Hi,j+ 1
2
h

∫
Eh

i,j+1
2

∩Ω

U∗y (x, yj+ 1
2
)dy

With the vector field U∗ : Eh → R2, the Gibou-Min method computes a vector field Uh :
Eh → R and a scalar field ph : Ωh → R such that DUh = 0 in Ωh and U∗ = Uh + Gph in
Ωh. Substituting Uh with U∗ −Gph in DUh = 0, we have the equation for ph,

−DGph = −DU∗ in Ωh. (2.3)

After ph is obtained by solving the above linear system, the solenoidal vector field Uh =
U∗ −Gph is calculated.
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3. CONVERGENCE ANALYSIS FOR THE HODGE PROJECTION Uh

From now on, we consider the convergence for the Gibou-Min method. Let Lh := DG
denote its associated linear operator, then it maps a discrete function ph : Ωh → R to another
function Lhph : Ωh → R such that(

Lhph
)
ij

= Hi+ 1
2
,j

(
phi+1,j − phij

)
−Hi− 1

2
,j

(
phij − phi−1j

)
+Hij+ 1

2

(
phij+1 − phij

)
−Hij− 1

2

(
phij − phij−1

) , (3.1)

for each (xi, yj) ∈ Ωh.
Most of lemmas and theorems in this section will be just stated without proofs, which we

refer to [13] for details, for our main theme of this work is to introduce the convergence of the
gradient in the Hodge-Helmholtz decomposition.

In this setting, we have that Ker
(
Lh
)

= span {1Ωh} and for a vector field U∗ : Eh → R,
−Lhph = −DU∗ has a unique solution ph ∈ {1Ωh}⊥.

To analyze the convergence for the scheme, we introduce two inner products defined on Eh

and Ωh.

Definition 3.1. Let Eh and Ωh be the sets of edges and grid nodes, respectively.
(i) (Inner product between vector fields) Given two vector fields U1, U2 : Eh → R, their

inner product is defined as〈
U1, U2

〉
Eh := h2

∑
i,j

Hi+ 1
2
,ju

1
i+ 1

2
,j
u2
i+ 1

2
,j

+ h2
∑
i,j

Hi,j+ 1
2
v1
i,j+ 1

2

v2
i,j+ 1

2

(ii) (Inner product between scalar fields) Given two discrete functions p1, p2 : Ωh → R,
their inner product is defined as〈

p1, p2
〉

Ωh := h2
∑
i,j

p1
i,j · p2

i,j

With the two inner product spaces, we can see in the following lemma that G is the adjoint
operator of − 1

h2
D.

Lemma 3.2 (Integration-by-parts). Let G and D be the discrete gradient and divergence op-
erators, respectively. Then for any discrete fuction p on Ωh and vector field U on Eh, we
have

〈Gp,U〉Eh = −
〈
p,

1

h2
DU

〉
Ωh

.

The integration-by-parts leads to a discrete version of the Helmholtz decomposition.

Theorem 3.3. Given vector field U∗ : Eh → R, there exists a unique ph ∈ {1Ωh}⊥ such that
DGp = DU∗. Therefore, the decomposition

U∗ = Uh +Gph with DGph = DU∗

is unique. Furthermore, the decomposition is orthogonal, i.e, 〈Uh, Gph〉Ωh = 0.
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Now, we are ready to analyze the Gibou-Min method. In the remainder of this work, by
p : Ω → R and U = (u, v) : Ω → R2, we denote the analytic solutions of the Helmholtz
decomposition U∗ = U + ∇p for the given vector field U∗ = (u∗, v∗) : Ω → R2. Also let
ph : Ωh → R and Uh : Eh → R denote the numerical solutions for the Gibou-Min method for
the given U∗ : Eh → R.

Definition 3.4. The convergence error eh : Ωh → R and consistency error ch : Ωh → R are
defined as eh := p− ph and ch := Lh

(
p− ph

)
.

The consistency error ch is given as a divergence of some vector field, ch = 1
hDd

h with
dh : Eh → R defined as

di+ 1
2
,j =

1

Hi+ 1
2
,j

∫
E

i+1
2 ,j
∩Ω

[
pi+1,j − pij

h
− u∗(xi+ 1

2
, yj)

]
dy

+
1

Hi+ 1
2
,j

∫
E

i+1
2 ,j
∩Ω

[
u∗(xi+ 1

2
, yj)−

∂p

∂x

(
xi+ 1

2
, yj

)]
dy,

and di,j+ 1
2

is defined in the same manner. We can estimate the vector dh for which ch = 1
hDd

h.

For each i and j, the Taylor series expansion shows

di+ 1
2
,j =

{
O(h3), if Hi+ 1

2
,j = 1,

O(h2), if 0 < Hi+ 1
2
,j < 1

(3.2)

and we have the same result for di,j+ 1
2
.

Theorem 3.5. Given a smooth vector field U∗, let U be its analytic Hodge projection and Uh

the numerical approximation from the Gibou-Min method,

U∗ = U +∇p and U∗ = Uh +Gph (ph ∈ {1Ωh}⊥ and Lhph = DU∗). (3.3)

Then we have
(i)
∥∥U − Uh∥∥ = O

(
h1.5

)
.

(ii)
∥∥G (eh)∥∥ =

∥∥Gp−Gph∥∥ = O
(
h1.5

)
.

Proof. From the decompositions (3.3), we have U − Uh = (U∗ −∇p)− (U∗ −Gph). Since
G is the standard central finite difference operator,∇p−Gp = O(h2). Hence, the estimate (i)
follows from (ii) and it suffices to show

∥∥Gp−Gph∥∥ = O
(
h1.5

)
. Lemma 3.2 shows〈1

h
dh −G(p− ph), G(p− ph)

〉
Eh = − 1

h2

〈1

h
Ddh − Lh(p− ph), p− ph

〉
Ωh = 0 (3.4)

Here we used the facts that DG = Lh and 1
hDd

h = ch = Lheh. Equation (3.4) means that
1
hd

h −G(p− ph) is orthogonal to G(p− ph), which implies∥∥∥∥1

h
dh
∥∥∥∥ =

∥∥∥∥1

h
dh −G(p− ph)

∥∥∥∥2

Eh

+
∥∥∥G(p− ph)

∥∥∥ ≥ ∥∥∥G(p− ph)
∥∥∥ .
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On the other hand, the pointwise estimate of dh given in (3.2) gives〈1

h
dh,

1

h
dh
〉
Eh =

∑
ij

Hi+ 1
2
,j

(
di+ 1

2
,j

)2
+
∑
ij

Hi,j+ 1
2

(
di,j+ 1

2

)2

=
∑

H
i+1

2 ,j
,H

i,j+1
2

=1

O(h6) +
∑

0<H
i+1

2 ,j
,H

i,j+1
2
<1

O(h4)

= O(h6)O(h−2) +O(h4)O(h−1) = O(h3).

Here, we used the fact that the number of inside edges, Hi+ 1
2
,j = 1 and Hi,j+ 1

2
= 1, grows

quadratically so that it becomes O(h−2), and that of edges near the boundary is O(h−1). Con-
sequently, we have

∥∥Gp−Gph∥∥ = O
(
h1.5

)
, which completes the proof. �

4. CONVERGENCE ANALYSIS FOR PRESSURE p

In order to estimate the convergence error using the gradient estimation, we need the Poincare-
Friedrichs inequality for piecewise constant functions as follows. Let D ∈ R2 be a bounded
and connected polygonal domain and T a simplicial triangulation of D. By E i(T ), we denote
the set of the interior edges of T . For an interior edge e shared by two triangles T1 and T2 in
T , we define a jump [[w]] across e as

[[w]] = w1n1 + w2n2

where nj is the outer normal unit vector of Tj and wj = wjTj for j = 1, 2. Then we have the
Poincare-Friedrichs inequality for piecewise constant functions with respect to T ([2, Lemma
10.6.6]).

Lemma 4.1. There exists a constant C > 0 depending only on the minimum angle of T such
that

‖c‖L2(D) ≤ C

∣∣∣∣∫
D
cdx

∣∣∣∣+

 ∑
e∈Ei(T )

|e|−1‖[[c]]‖2L2(e)

1/2


for any piecewise constant function c with respect to T .

Theorem 4.2. Let u : Ωh → R be a discrete function with∫
Ωh

u(P )dP =
∑
P∈Ωh

u(P )vol(ΩP ) = 0, (ΩP = CP ∩ Ω).

Then there exists a constant C independent of the step size h such that

C
hmin
h
‖u‖2L2(Ωh) ≤

∑
Q∈Eh

(
u(Q+)− u(Q−)

h

)2

HQh
2. (4.1)
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Proof. For each (xi, yj), we take a control volume Dij ⊂ [xi − h
2 , xi + h

2 ]× [yj − h
2 , yj + h

2 ]
as Dij is a union of triangles such that vol(Dij) = vol(Ωij) and

Dij ∩Di+1,j = Li+ 1
2
,j , Dij ∩Di,j+1 = Li,j+ 1

2

and any angle θ of the triangles is bounded as

θ1 ≤ θ ≤ θ2

where θ1 and θ2 are independent of h. In this setting, we can see that for every edge e, either
e ∩ EQ = e for some Q ∈ Eh or |e ∩ EQ| = 0 for all Q ∈ Eh. From this setting, the number

of triangles in Dij sharing the edge Li+ 1
2
,j is O((hHi+ 1

2
,j)/hmin) where

∣∣∣Li+ 1
2
,j

∣∣∣ = hHi+ 1
2
,j

and hmin = min{
∣∣∣Li± 1

2
,j

∣∣∣ , ∣∣∣Li,j± 1
2

∣∣∣}.
Now, we define a piecewise constant function uc as uc = uij on Dij . Then we have∫

∪Dij

|uc(x)|2dx =

∫
Ωh

|u(P )|2dP and
∫
∪Dij

uc(x)dx =

∫
Ωh

u(P )dP = 0.

We note that ‖[[uc]]‖L2(e) = 0 if |e ∩ Li+ 1
2
,j | = 0 and ‖[[uc]]‖2L2(e) = |e|(ui+,j − uij)

2

if |e ∩ Li+ 1
2
,j | = |e|. Applying uc to Lemma 4.1, we verify that there exists a constant C

independent of h such that∫
∪Dij

|uc(x)|2dx ≤ C
∑
Q∈Eh

(uc(Q
+)− uc(Q−))2HQh

hmin

= C
h

hmin

∑
Q∈Eh

(
u(Q+)− u(Q−)

h

)2

HQh
2

which completes the proof. �

We note that from the argument used for the proof of Theorem 4.2, we can see that we have
an equality with h/hmin = 1 in the case when there are two positive constants C1 and C2

independent of h such that

C1 ≤
Hi± 1

2
,j

Hi± 1
2
,j +Hi,j± 1

2

≤ C2, for all (xi, yj) ∈ Ωh.

Since p+c is also an analytic solution of equation (2.1) for an analytic solution p and a constant
c, we may assume that ∑

P∈Ωh

(
p− ph

)
(P )vol(ΩP ) = 0

for the numerical solution ph.
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Theorem 4.3 (Convergence of pressure). Let p be an analytic solution to (2.1) and let ph be
the numerical solution to (3.1) such that∑

P∈Ωh

(
p− ph

)
(P )vol(ΩP ) = 0.

Then we have

‖p− ph‖L2(Ωh) ≤
O(h2)√
hmin

with hmin = min{
∣∣∣Li± 1

2
,j

∣∣∣ , ∣∣∣Li,j± 1
2

∣∣∣}.
Proof. Applying the convergence error eh = p− ph to Theorem 4.2, we have

‖eh‖2L2(Ωh) ≤ C
h

hmin

∑
Q∈Eh

(
eh(Q+)− eh(Q−)

h

)2

HQh
2 = C

h

hmin
‖Geh‖2.

On the other hand, we showed ‖Geh‖2 ≤ O(h3) in Theorem 3.5 (ii). Consequently, we have
the convergence accuracy as

‖eh‖2L2(Ωh) ≤
O(h4)

hmin
which shows the theorem. �

We observed in [12] that for many domains, however, we have hmin = O(h2) as h tends to
zero.

Definition 4.4. Let Ω ⊂ R2 be a bounded domain. We say that Ω has the general intersection
property if the cumulative distribution function p(ν) defined by

p(ν) := |{(xi, yj) ∈ Ωh : dist ((xi, yj),Γh) ≤ ν}| (4.2)

is almost linear, i.e, p(ν) = O(h−2ν).

Many domains with smooth boundary as well as rectangular and circular shapes have the
general intersection property. Note that when the domain Ω has the property, the set Ωτ∗

h
becomes empty as h tends to zero so that the threshold treatment works nothing.

Theorem 4.5. Let Ω be a bounded open domain with smooth boundary. Assume that Ω has the
general intersection property. Then, for sufficiently small h, we have

‖eh(h)‖L2(Ωh) = ‖p− ph‖L2(Ωh) = O(h).

Proof. Assume that Ω has the general intersection property. Then, we have hmin = O(h2) as h
tends to zero because p(hα) = Ø(hα−2) < 1 for any α > 1. In this case, Theorem 4.3 implies

‖p− ph‖L2(Ωh) ≤
O(h2)√
hmin

= O(h)

and it shows the theorem. �
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5. NUMERICAL TEST

5.1. Two dimensional example. In Ω =
{

(x, y)|x2 + y2 < 1
}

, we take a vector field U =

(u, v) with u (x, y) = −2xy+ xy√
x2+y2

and v (x, y) = 3x2 +y2− 2x2+y2√
x2+y2

, and choose a scalar

variable p (x, y) = ex−y. Note that U · ~n = 0 on ∂Ω and ∇ · U = 0 in Ω. The run of the
Gibou-Min method on U∗ = U +∇p is reported in Table 1.

TABLE 1. Convergence order

grid
∥∥U − Uh∥∥

L2 order
∥∥p− ph∥∥

L2 order
402 6.67× 10−3 1.33× 10−3

802 2.48× 10−3 1.42 2.49× 10−4 2.41
1602 8.14× 10−4 1.60 6.59× 10−5 1.92
3202 3.05× 10−4 1.41 1.32× 10−5 2.31
6402 1.01× 10−4 1.58 3.73× 10−6 1.82

FIGURE 1. Convergence order

5.2. Three dimensional example. In Ω =
{

(x, y, z)|x2 + y2 + z2 < 1
}

, we take a vector
field U =

(
x2z + 3y2z,−2xyz,−x3 − xy2

)
and a scalar variable p (x, y, z) = ex−y+z . Note

that U ·~n = 0 on ∂Ω and∇·U = 0 in Ω. The run of the Gibou-Min method on U∗ = U +∇p
is reported in Table 2.
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TABLE 2. Convergence order

grid
∥∥U − Uh∥∥

L2 order
∥∥p− ph∥∥

L2 order
203 1.11× 10−2 3.47× 10−3

403 3.89× 10−3 1.51 7.21× 10−4 2.26
803 1.31× 10−3 1.57 1.53× 10−4 2.23
1603 4.43× 10−4 1.56 3.50× 10−5 2.12

6. CONCLUSION

In this work, we performed convergence analysis for the Gibou-Min method that calcu-
lates the Hodge-Helmholtz decomposition. Using the L2-orthogonality between the error vec-
tor U − Uh and the consistency dh, we proved the estimate

∥∥U − Uh∥∥
L2 = O

(
h1.5

)
and∥∥Gp−Gph∥∥

L2 = O
(
h1.5

)
for the gradient of the pressure error, as well. We then introduced a

discrete version of the Poincare inequality, which led us to the result
∥∥p− ph∥∥ = O

(
h−0.5
min h

2
)

with hmin = min{
∣∣∣Li± 1

2
,j

∣∣∣ , ∣∣∣Li,j± 1
2

∣∣∣}. Our estimate reads that for many domains with hmin =

O(h2), for instance, domains with general intersection property, the pressure convergence is
O(h). According to our numerical tests, even though the estimate

∥∥U − Uh∥∥
L2 = O

(
h1.5

)
is

tight, however, the estimate does not meet the observed order
∥∥p− ph∥∥ = O

(
h2
)
. We put it

off to future research to improve the estimate.
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