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THE k-ALMOST RICCI SOLITONS AND
CONTACT GEOMETRY

AMALENDU GHOSH AND DHRITI SUNDAR PATRA

ABSTRACT. The aim of this article is to study the k-almost Ricci soliton
and k-almost gradient Ricci soliton on contact metric manifold. First,
we prove that if a compact K-contact metric is a k-almost gradient Ricci
soliton, then it is isometric to a unit sphere S?"t1. Next, we extend this
result on a compact k-almost Ricci soliton when the flow vector field X is
contact. Finally, we study some special types of k-almost Ricci solitons
where the potential vector field X is point wise collinear with the Reeb
vector field £ of the contact metric structure.

1. Introduction

A Riemannian manifold (M™, g) is said to be a Ricci soliton if there exists a
vector field X on M™ and a constant A satisfying the equation S + %fxg = \g,
where £ x g denotes the Lie-derivative of g along the vector field X on M™ and
S is the Ricci tensor of ¢g. In general, X and A are known as the potential vector
field and the soliton constant, respectively. Ricci solitons are the fixed points of
Hamilton’s Ricci flow: %g(t) = —25(g(t)) (where g(t) a one-parameter family
of metrics on M") viewed as a dynamical system on the space of Riemannian
metrics modulo diffeomorphisms and scalings (cf. [12]). Recently, the notion
of Ricci soliton was generalized by Pigoli-Rigoli-Rimoldi-Setti [16] to almost
Ricci soliton by allowing the soliton constant A to be a smooth function.

Recently, Wang-Gomes-Xia [18] extended the notion of almost Ricci soliton
to k-almost Ricci soliton which is defined as:

Definition 1.1. A complete Riemannian manifold (M™,g) is said to be a
k-almost Ricci soliton, denoted by (M"™, g, X, k, ), if there exists a smooth
vector field X on M™, a soliton function A\ € C°°(M™) and a positive real
valued function k£ on M™ such that

(1.1) S+ELxg= Mg
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This notion has been justified as follows. Suppose (M™, go) be a complete
Riemannian manifold of dimension n and let g(t) be a solution of the Ricci
flow equation defined on [0, €), € > 0, such that ; is a one-parameter family of
diffeomorphisms of M™, with v = idy and g(t)(z) = p(x, t); go(x) for every
x € M™, where p(z,t) is a positive smooth function on M™ x [0,€). Then one
can deduce

F90) (@) = Fp(x, )i go(x) + p(x, )07 £ 5.4 (4.1)90(2)-
When ¢t = 0, the foregoing equation reduces to
Sgo + g-fxgo = A\go,

where X = %w(x,O), Az) = —%%p(m,O) and k(z) = p(z,0).

A k-almost Ricci soliton is said to be shrinking, steady or expanding accord-
ingly as A is positive, zero or negative, respectively. It is trivial (Einstein) if the
flow vector field X is homothetic, i.e., £xg = cg, for some constant ¢. Other-
wise, it is non-trivial. A k-almost Ricci soliton is said to be a k-almost gradient
Ricci soliton if the potential vector field X can be expressed as a gradient of
a smooth function v on M", i.e., X = Du, where D is the gradient operator
of g on M™. In this case, we denotes (M", g, Du,k,\) as a k-almost gradi-
ent Ricci soliton with potential function u. Further, the fundamental equation
(1.1) takes the form

(1.2) S+ kV2u = \g,

where V2u denotes the Hessian of .

In particular, a Ricci soliton is the 1-almost Ricci soliton with constant A,
and an almost Ricci soliton is just the 1-almost Ricci soliton. Barros and
Ribeiro Jr. proved (cf. [2]) that a compact almost Ricci soliton with constant
scalar curvature is isometric to a Euclidean sphere. An analogous result has
also been proved by Wang-Gomes-Xia [18] for the case of k-almost Ricei soliton.

Theorem [WGX]. Let (M™, g, X,k,\), n > 3 be a non-trivial k-almost Ricci
soliton with constant scalar curvature r. If M™ is compact, then it is isometric

to a standard sphere S™(c) of radius ¢ = w

Recall that a smooth manifold M™ together with a Riemannian metric g is
said to be a generalized quasi-Einstein manifold if there exist smooth functions
f, pand X such that (cf. [7])

S+ V2f — pdf ® df = Ag.
1

For i = -, the generalized quasi-Einstein manifold is known as generalized m-
quasi-Einstein manifold (cf. [1,3]), and when X is constant the generalized quasi-
Einstein manifold is simply known as m-quasi-Einstein manifold. Case-Shu-
Wei [6] proved that any complete quasi-Einstein-metric with constant scalar
curvature is trivial (Einstein). Subsequently, this has been extended by Barros-

Gomes [1]. In fact, they proved that any compact generalized m-quasi-Einstein
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metric with constant scalar curvature is isometric to a standard Euclidean
sphere S™. Particularly, Barros-Ribeiro [3] construct a family of nontrivial
generalized m-quasi-Einstein metric on the unit sphere S™(1) that are rigid
in the class of constant scalar curvature. It is interesting to note that by a
suitable choice of the function f it is possible to reduce any generalized m-
quasi-Einstein metric to a k-almost Ricci soliton. For instance, if we take

uw=en and k = —M, then (1.2) reduces to

1
S+V2f—%df®df:/\g.

Thus, in one hand k-almost Ricci soliton generalizes generalized m-quasi-Ein-
stein metric, on the other it covers gradient Ricci soliton and gradient almost
Ricei soliton. For details we refer to [18]. Recently, Yun-Co-Hwang [20] studied
Bach-flat k-almost gradient Ricci solitons.

During the last few years Ricci soliton and almost Ricci soliton have been
studied by several authors (cf. [8], [9], [10], [11], and [17]) within the frame-work
of contact geometry. In [17], Sharma initiated the study of gradient Ricci soliton
within the frame-work of K-contact manifold and prove that “any complete
K -contact metric admitting a gradient Ricci soliton is Finstein and Sasakian”.
Later on, this has been generalized by the second author [9] who proved that
“if a complete K-contact metric (in particular, Sasakian) represents a gradient
almost Ricci soliton, then is it isometric to the unit sphere S?"T17. Inspired
by these results, here we consider contact metric manifolds whose metric is
a k-almost Ricci soliton. Following [3], one can construct a family of non-
trivial examples of generalized m-quasi-Einstein metrics on the odd dimensional
unit sphere S?"*!. Another motivation arises from the fact that any odd
dimensional unit sphere satisfies the generalized m-quasi-Einstein condition
and hence it satisfies the gradient k-almost Ricci soliton equation (1.2). Since
any odd dimensional unit sphere S?"*1 admits standard K-contact (Sasakian)
structure we are interested in studying K-contact metric as a gradient k-almost
Ricci soliton. We address this issue in Section 3 and prove that if a compact
K-contact manifold admits a k-almost gradient Ricci soliton then it is isometric
to a unit sphere S?"*1. Next, we study k-almost Ricci soliton in the frame-
work of compact K-contact manifold when the potential vector field is contact.
Finally, a couple of results on contact metric manifolds admitting k-almost
Ricci soliton are presented under the assumption that the potential vector field
X is point wise collinear with the Reeb vector field ¢ of the contact metric
structure.

2. Preliminaries

First, we recall some basic definitions and formulas on a contact metric
manifold. By a contact manifold we mean a Riemannian manifold M2+ of
dimension (2n + 1) which carries a global 1-form 71 such that n A (dn)™ # 0
everywhere on M?"+1. The form 7 is usually known as the contact form on
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M?"+1 Tt is well known that a contact manifold admits an almost contact
metric structure on (¢,&,7,9), where ¢ is a tensor field of type (1,1), £ a
global vector field known as the characteristic vector field (or the Reeb vector
field) and g is Riemannian metric, such that

(2.1) Y = =Y +n(Y)E,
(2.2) n(Y) = g(¥,¢),
(2.3) 9(0Y,9Z) = g(Y, Z) —n(Y)n(Z),

for all vector fields Y, Z on M. It follows from the above equations that o€ =0
and no e = 0 (see [4, p. 43]). A Riemannian manifold M?" 1 together with
the almost contact metric structure (p, &, 7, g) is said to be a contact metric if
it satisfies ([4, p. 47))

(2.4) dn(Y, 2) = g(Y, Z)

for all vector fields Y, Z on M. In this case, we say that g is an associated metric
of the contact metric structure. On a contact metric manifold M?"*1 (¢, £, 7, g),
we consider two self-adjoint operators h = %.ﬁg(p and | = R(-, &), where £¢
is the Lie-derivative along ¢ and R is the Riemann curvature tensor of g. The
two operators h and [ satisfy (e.g., see [4, p. 84, p. 85])

Tr h=0, Tr (hp)=0, & =0, I£=0, hp=—ph.
We now recall the following:
Lemma 2.1 ([4, p. 84; p. 112; p. 111]). On a contact metric manifold M*"+1 (¢,
§,1,9) we have
(2.5) Vyé = —pYV — phY,
(2.6) Ricy(€,8) = g(Q€, &) =Tr I =2n—Tr (h?),
27 (Vze)Y + (Vezp)pY =29(Y, Z2)§ —n(Y)(Z + hZ + n(Z2)¢)
for all vector fields Y, Z on M; where V is the operator of covariant differ-

entiation of g and Q the Ricci operator associated with the (0,2) Ricci tensor
given by S(Y, Z) = g(QY, Z) for all vector fields Y, Z on M.

A contact metric manifold is said to be K-contact if the vector field £ is
Killing, equivalently if » = 0 ([4, p. 87]). Hence on a K-contact manifold Eq.
(2.5) becomes

(2.8) Vyé€ =—¢Y

for any vector field Y on M. Moreover, on a K-contact manifold the following
formulas are also valid.

Lemma 2.2 (see Blair [4, p. 113; p. 116]). On a K-contact manifold
M?" 44 (p,€,m, ) we have

(2.9) Q¢ = 2n¢,
(2.10) R(&,Y)Z = (Vyp)Z
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for all vector fields Y, Z on M.

An almost contact metric structure on M is said to be normal if the almost
complex structure J on M x R defined by (e.g., see Blair [4, p. 80])

J(X, fd/dt) = (X — f& n(X)d/dt),

where f is a real function on M x R, is integrable. A normal contact metric
manifold is said to be Sasakian. On a Sasakian manifold (e.g., [4, p. 86])

(Vxp)Y =g(X,Y)§ —n(Y)X

for all vector fields X, Y on M. Further, a contact metric manifold is Sasakian
if and only if the curvature tensor R satisfies (e.g., [4, p. 114])

(2.11) R(X,Y)¢ = n(Y)X = n(X)Y

for all vector fields X, Y on M. A Sasakian manifold is K-contact but the
converse is true only in dimension 3 (e.g., [4, p. 87]).

A contact metric manifold is said to be n-Einstein if the Ricci tensor S
satisfies S(Y, Z) = ag(Y, Z) + bn(Y)n(Z) for any vector fields Y, Z on M and
are arbitrary functions a, b on M. The functions a and b are constant for a
K-contact manifold of dimension > 3 (cf. [19]).

Let T'M be the unit tangent bundle of a compact orientable Riemannian
manifold (M, g) equipped with the Sasaki metric g;. Any unit vector field U
determines a smooth map between (M, g) and (T M, g,). The energy E(U) of
the unit vector field U is defined by

E(U) =3 [ [1dU |* dM = Jvol(M,g) + 5 [, | VU || dM,

where dU denotes the differential of the map U and dM denotes the volume
element of M. U is said to be a harmonic vector field if it is a critical point
of the energy functional E defined on the space x' of all unit vector fields
on (M,g). A contact metric manifold is said to be an H-contact manifold if
the Reeb vector field ¢ is harmonic. In [15], Perrone proved that “A contact
metric manifold is an H-contact manifold, that is £ is a harmonic vector field,
if and only if € is an eigenvector of the Ricci operator.” On a contact metric
manifold, £ is an eigenvector of the Ricci operator implies that Q€ = (T'r [)E.
This is true for many contact metric manifolds. Such as, n-Einstein contact
metric manifolds, K-contact (in particular Sasakian) manifolds, (k, u)-contact
manifolds and the tangent sphere bundle of a Riemannian manifold of constant
curvature. In particular, this condition holds on the unit sphere $2"*+! with
standard contact metric structure.

Definition 2.1. A vector field X on a contact manifold is said to be a contact
vector field if it preserve the contact form 7, i.e.,

(2.12) Lxn=fn

for some smooth function f on M. When f = 0 on M, the vector field X is
called a strict contact vector field.
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Example 2.2. It is well know [4] that any odd dimensional unit sphere S?"+!
admits a standard K-contact (Sasakian) structure (y,&,7,g) and hence the
Reeb vector field satisfies (2.8), for any vector field Y on S?"*1. We now recall
the theorem of Obata [14] that a complete connected Riemannian manifold
(M, g) of dimension > 2 is isometric to a sphere of radius % if and only if it
admits a non-trivial solution k of the equation VVk = —c?kg. For unit sphere
this transforms to VVk = —kg, where k is the eigenfunction of the Laplacian
on 5271 Let X be a vector field on $2"+! such that X = —Dk + ué, where
u is a constant. Differentiating this along an arbitrary vector field Y on $27+!
and using (2.8) we obtain Vy X = —Vy Dk — u@Y . Then by Obata’s theorem
and (2.8) we see that

(2.13) E(£xg)(Y,Z2) + S(Y, Z) = (K + 2n)g(Y, Z)

for all vector fields Y, Z on S?"*1. This shows that (S?"*1 g, X, \) is a almost
Ricei soliton with A = k2 4+ 2n. Moreover, if we take X = Du for some smooth
non constant function u on S?"*1 then from (2.13) it follows that S?"*1 also
admits k-almost gradient Ricci soliton.

3. K-contact metric as k-almost gradient Ricci soliton and
k-almost Ricci soliton

We assume that a K-contact metric g is a k-almost gradient Ricci soliton
with the potential function u. Then the k-almost gradient Ricci soliton Eq.
(1.2) can be exhibited as

(3.1) kVyDu+ QY = \Y

for any vector field Y on M; where D is the gradient operator of g on M.
Taking the covariant derivative of (3.1) along an arbitrary vector field Z on M
yields

kaVYDu = %(Zk‘)(QY - )\Y) - (VZQ)Y - Q(VZY) + (Z)\)Y + )\sz

for any vector field Y on M. Using this and (3.1) in the well known expression
of the curvature tensor R(Y, Z) = [Vy, Vz] = V|y,z], we can easily find out the
curvature tensor which is given by

kR(Y, Z)Du = %(Yk)(QZ —A\Z)— %(Zk)(QY —AY)

+(VzQ)Y — (VyQ)Z + (YN Z — (ZN)Y

for all vector fields Y, Z on M.
Before entering into our main results we prove the following.

Lemma 3.1. On a K-contact manifold M>"*1(p,&,n,9), we have
(3:2) VeQ = Qo — ¢Q.
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Proof. Since ¢ is Killing on a K-contact manifold, we have (£:Q)Y = 0 for
any vector field Y on M. Taking into account (2.8) it follows that
0= £e(QY) — Q(£eY)
=VeQY — Vv — Q(VeY) + Q(Vy§)
= (VeQ)Y + QY — QpY
for any vector field Y on M. This completes the proof. O
Theorem 3.1. Let (M?"*! g, Du,k,)\) be a k-almost gradient Ricci soliton

with the potential function w. If (M, g) is a compact K-contact manifold, then
it is isometric to a unit sphere S?"t1,

Proof. Firstly, taking covariant differentiation of (2.9) along an arbitrary vector
field Y on M and using (2.8), we get

(3.3) (VyQ)§ = QuY — 2npY.

Now, replacing £ instead of Y in (3.2) and making use of the K-contact condi-
tion (2.9), (3.3) and (3.2), we get

kR(¢, Z)Du = (A ;2")(21@5 + %(Ek)(QZ —\Z) — 2npZ

+9QZ+ (EN)Z — (ZM)¢

for any vector field Z on M. Scalar product of the last equation with an
arbitrary vector field Y on M and using (2.10), we obtain

A—2n

NZE(Y) + (€A~ 2 (€R)g(Y: 2)

(34) 4 L (ER9(QY.2) + 2n9(oY, 2) — g(QeY, Z) — (ZN(Y) =0

for any vector field Z on M. Next, substituting Y by Y and Z by ¢Z in (3.4)
and using (2.1), noy = 0 and @€ = 0 provides

kg((Vz@)Y, Du) +(

Fg((Vp70)Y, Du) + (€A — 2 (€)oY, 2) — (Y )(2)}

+ 2 (ER)9(QeY, 07) + 2ng(4Y, Z)  4(pQY, 2) =0

for all vector fields Y, Z on M. Adding the preceding Eq. with (3.4) and using
(2.7) (where h = 0, as M is K-contact) yields

2Ak(Eu) + (EX) — 2 (ER (Y, 2) + [ (k) — (€X) — K(Ewn(¥ )n(2)
A28~ KZ0) — (ZNInY) + 7 (ER)9(@QY, 2)

+aAng(pY, Z) — 9(QgY +¢QY, Z) + 1 (ERg(9QY,¢2) = 0
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for all vector fields Y, Z on M. Anti-symmetrizing the foregoing equation

provides
NZE) = k(Zu) — (ZN)n(Y) = 29(QeY + ¢QY, Z)

{(
—{AZE) R~ KYu) — (YA}(Z) + 8ng(oY, Z) = 0

A—2n

for all vector fields Y, Z on M. Moreover, substituting Y by ¢Y and Z by pZ
in the last equation and using the K-contact condition (2.9), (2.1), nop = 0
and p¢ = 0 gives

9(QeY + QY. Z) = dng(pY, Z)
for all vector fields Y, Z on M. It follows from last Eq. that
(3.5) QpY + QY = 4nypY

for any vector field Y on M. Let {e;,pe;, &}, @ = 1,2,3,...,n, be an or-
thonormal @-basis of M such that Qe; = o;e;. Thus, we have pQe; = o;pe;.
Substituting e; for Y in (3.5) and using the foregoing equation, we obtain
Qve; = (4n — 0;)pe;. Using the ¢-basis and (2.9), the scalar curvature r is
given by

M=

r=g(Q¢&, &) + . [9(Qei, i) + g(Qwes, pe;)]

K2

3|l
-

=g(Q¢, &) + . [oig(ei, ei) + (4n — 0i)g(pei, pei)]

K2

I
—

=2n(2n+1)
Therefore, the scalar curvature r is constant. As M is compact, Theorem
[WGX] shows that M is isometric to S?"*1(c), where ¢ = w is the
radius of the sphere. Since r = 2n(2n + 1), we have ¢ = 1. Hence, M is
isometric to a unit sphere $?*+!. This completes the proof. O

Remark 3.1. From the last theorem we see that any compact K-contact mani-
fold M admitting a gradient k-almost Ricci soliton is isometric to a unit sphere
and hence of constant curvature 1. Consequently, M is Sasakian. Since k-
almost Ricci soliton covers Einstein manifold, we may compare this as an exten-
sion of the odd dimensional Goldberg conjecture which states that any compact
FEinstein K-contact manifold is Sasakian. For details, we refer to Boyer-Galicki

[5].
In particular, the above result is also true for complete Sasakian manifolds.

Corollary 3.1. Let (M*"*1 g Du,k,\) be a k-almost gradient Ricci soliton
with the potential function w. If (M, g) is a complete Sasakian manifold, then
it is compact and isometric to a unit sphere S*"+1.
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Proof. On a Sasakian manifold the Ricci operator @ and ¢ commutes, i.e.,
Qv = ¢Q (see [4, p. 116]). Using this in (3.5) implies Q@Y = 2npY for any
vector field Y on M. Substituting Y by Y in the last equation and using (2.9)
gives QY = 2nY for any vector field Y on M. This shows that M is Einstein
with Einstein constant 2n. As (M, g) is complete, M is compact by Myers’
Theorem [13]. The rest of the proof follows from the last theorem. O

Next, we extend Theorem 3.1 and consider K-contact metric as a k-almost
Ricci soliton when its potential vector field is a contact vector field and prove:

Theorem 3.2. Let M?"1(p,£,1m,9) be a compact K -contact manifold with X
as a contact vector field. If g is a k-almost Ricci soliton with X as the potential
vector field, then M is isometric to a unit sphere S?"+1,

Proof. Firstly, taking Lie-derivative of (2.4) along X and using (1.1) we have
(36)  k(£xdn)(Y,Z) =29(=QY + XY, 0Z) + kg(Y, (£x¢)Z)

for all vector fields Y, Z on M. As X is a contact vector field, we deduce from
(2.12) that

(3.7) £xdn =d£xn = (df) An+ f(dn).
Now, making use of (3.7) in (3.6), we obtain
(38)  2k(£x9)Z =4QpZ + 2(fk = 2\)¢Z + k(n(Z)Df — (Z[)§)

for any vector field Z on M. Next, replacing & instead of Z in the last equation
and using @& = 0 we have

(3.9) 2(Lxp)§=Df - (£)E,
where we use k is positive. Further, tracing (1.1) gives
(3.10) kdivX = (2n+ )A —r.

Let w be the volume form of M, i.e., w =n A (dn)™ # 0. Taking Lie-derivative
of this along the vector field X and using the formula £xw = (divX)w and
equation (3.7) yields divX = (n+ 1) f. By virtue of this, (3.10) provides

(3.11) r=02n+ DA - (n+1kf.

Also, Lie-differentiation of g(&,€) = 1 along an arbitrary vector field X on M
and by the use of the equations (1.1), (2.9) yields

(3.12) kg(£x£,6) =2n— A

Now, taking Lie-derivative of (2.2) on X and using (1.1), (2.9) and (2.12) we
obtain k£ x& = (kf —2A+4n)£. Making use of this in (3.12) yields kf = A—2n.
and therefore we have k£ x& = (2n— A)€. Next, taking Lie-derivative of £ = 0
along X and using the foregoing equation we get (£x¢)¢ = 0. In view of this,
the Eq. (3.9) becomes Df = (£f)¢, i.e., df = (£f)n. Exterior derivative of the
preceding equation gives d?f = d(¢f) An+ (£f)dn. Using d? = 0 in the last
equation and then taking the wedge product with n we get (£f)n Adn = 0.
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By the definition of contact structure we know that n A dn is non-vanishing
everywhere on M. Hence the previous equation provides £ f = 0. This implies
that df = 0, and therefore f is constant on M. Integrating both sides of
divX = (n+1)f over M and applying the divergence theorem we get f = 0.
Since kf = A — 2n, it follows that A = 2n. Consequently, equation (3.11) gives
r = 2n(2n 4+ 1). This shows that the scalar curvature is constant. As M is
compact, we may invoke Theorem [WGX] to conclude that M is isometric to

S§2nt1(c), where ¢ =4/ w is the radius of the sphere. Since r = 2n(2n+1),

we have ¢ = 1, and hence M is isometric to a unit sphere $2?+1. This completes
the proof. O

Waiving the compactness assumption and imposing a commutativity condi-
tion we have

Theorem 3.3. Let M?" (o, &,n,9), n > 1, be a K-contact manifold with
Qe = Q. If g is a k-almost Ricci soliton such that X is a contact vector field,
then it is trivial and the soliton vector field is Killing.

Proof. As f is constant and fk = \ — 2n, the equation (3.8) becomes

(3.13) E(£x9)Z =2Q0Z — (A +2n)pZ

for all vector field Z on M. Also, from (2.12) we have k£ xn = (A—2n)n. Now,
taking Lie-derivative of ¢>Z = —Z +n(Z)¢ along X and then multiplying k on

both sides and using the forgoing Eq., we obtain ko(£x¢)Z + k(£xv)pZ =0
for any vector field Z on M. In view of (3.13), the last Eq. becomes

0QYZ + Qu*Z = (A +2n)p>Z
for any vector field Z on M. Since Q¢ = @, the last equation reduces to
(3.14) QZ = (MP)Z + (2552 )m(2)¢

for any vector field Z on M. This shows that (M, g) is n-Einstein. Now,
differentiating (3.14) along an arbitrary vector field Y on M and using (2.8),
we get

(VyQ)Z = () Z — (F)n(2)¢ — (52N 9(Z, Y ) +1(Z) Y }

for any vector field Z on M. Tracing the foregoing equation over Y and Z,
respectively, we have Zr = ZX — (E\n(Z) and Zr = nZ(\) for any vector
field Z on M. Since £ is Killing, £&r = 0. Hence, the last equation provides
&X = 0. Consequently, we have Zr = ZX and Zr = nZ(\) for any vector field
Z on M. As n > 1, these two equations imply that A and r are constant.
By virtue of (3.14), Eq. (3.13) reduces to (£x¢)Z = 0 for any vector field Z
on M. At this point, we recall Lemma 1 (cf. [10]) “if a vector field X leaves
the structure tensor ¢ of the contact metric manifold M invariant, then there
exists a constant ¢ such that £xg = c¢(g+n®mn)” to conclude that

(£x9)(Y, 2) = {g(Y, Z) + n(Y)n(Z)}
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for all vector fields Y, Z on M. On the other hand, making use of (3.14) in
the Eq. (1.1), we find

E(£xg)(Y, 2) = MY, 2) - S(Y, 2)
for all vector fields Y, Z on M. Comparing the last two equations, we deduce
(3.15) (Y, 2) +n(Y)n(Z)} = \g(Y, Z) = S(Y, Z).

Next, putting Y = Z = ¢ in (3.15) and using (2.9), we get ck = 2(\ — 2n).
Further, tracing (3.15) yields ck(n + 1) = (2n + 1)A — r. These two equations
together provides r = 4n(n + 1) — A. Moreover, using kf = A — 2n in (3.11)
we have r = (2n + 1)A — (n + 1)(A — 2n). Comparing the last two equations
we see that A = 2n. Utilizing this in (3.14) provides QY = 2nY for any vector
fields Y on M, i.e., the soliton is trivial. This completes the proof. U

For a Sasakian manifold the commutativity condition Q¢ = ¢@Q holds triv-
ially (e.g., see Blair [4]). Thus, we have the following:

Corollary 3.1. Let M?"t(p,£,m,9), n > 1, be a Sasakian manifold with X
is a contact vector field. If g is a k-almost Ricci soliton, then it is trivial and
the soliton vector field is Killing.

4. k-almost Ricci soliton where X = p§

In this section, we shall discuss about some special type of k-almost Ricci
soliton where the potential vector field X is point wise collinear with the Reeb
vector field £ of the contact metric manifold.

Theorem 4.1. Let M?"*1(p,£&,n,9) be a compact H-contact manifold. If g
represents a non-trivial k-almost Ricci soliton with non-zero potential vector
field X collinear with the Reeb vector field &, then M is Einstein and Sasakian.

Proof. Since the potential vector field X on M is collinear with the Reeb vector
field &, we have X = p€, where p is a non-zero smooth function on M (as X is
non zero). Taking covariant derivative along an arbitrary vector field Y on M
and using (2.5) and (2.6) we get

(4.1) VyX = (Yp)§ — p(¢Y + phY).

By virtue of this the soliton equation (1.1) becomes

(42)  k(Yp)n(Z)+k(Zp)n(Y) — 2kpg(phY, Z) +25(Y, Z) = 2Xg(Y, Z)
for all vector fields Y, Z on M. Replacing ¢ instead of Z in (4.2) gives

(43) KDp+ k(Ep)E +2(Q€ — AE) = 0.
At this point, putting Y = Z = £ in (4.2) and making use of (2.6) yields
(4.4) k(&p) +Trl = A

Since M is H-contact, the Reeb vector field £ is an eigenvector of the Ricci
operator at each point of M, i.e., Q¢ = (Trl)€. Substituting this in (4.2) and
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then using (4.4), we have kDp = k(£p)¢. Since the k-almost Ricci soliton is
non trivial and k is a positive function, we have Dp = ({p){. Next, taking co-
variant derivative along an arbitrary vector field Y on M and using (2.5) yields
VyDp =Y (£p)§ — (§p)(9Y + hY'). In view of g(VyDp, Z) = g(VzDp,Y),
the foregoing equation yields

(4.5) Y (Ep)n(Z) = Z(Ep)n(Y) + 2(§p)dn (Y, Z) = 0

for all vector fields Y, Z on M. Choosing X, Y orthogonal to £ and noting
that dn # 0, the last equation provides £p = 0. Hence p is constant. Thus, the
equation (4.2) reduces to

(4.6) QZ + (kp)hoZ = \Z

for any vector field Z on M. Taking the trace of (4.6) we obtain r = (2n+1)A.
Further, covariant derivative of (4.6) along an arbitrary vector field Y on M
gives

(Vv Q)Z + (kp)(Vy h)Z + p(Y K)hpZ = (YN)Z.

Contracting this over Y yields

1 .
(4.7) S(20) + p((ho2)) + (hp)div(hg) Z = (2)
for any vector field Z on M. On a contact metric manifold it is known that
div(hp)Z = g(Q&, Z) — 2nn(Z) for all vector field Z on M (see [4]). Using
Q¢ = (T'rl)¢ in the previous equation we have div(hy)Z = (T'rl — 2n)n(Z) =
|h|>n(Z). Hence, equation (4.7) reduces to
(4.8) 3(Zr) + p((hpZ)k) + (kp)(Trl = 2n)n(Z) = (Z)

for any vector field Z on M. Setting Z = £ and making use of r = (2n + 1)\
and (2.6) equation (4.8) reduces to
2n—1

) — (ko)A = 0.
Taking into account (4.1) and X = p& we see that div(rX) = p(&r) +r(&p) =
p(&r), where we have also used tr(he) = 0. Using this equation in (4.9) gives
2L div(rX) = (kp?)|h|%. Integrating this over M and using divergence theo-
rem we obtain

(4.9)

/k,ﬂ |h|>dM = 0.

Since the soliton is non-trivial with non-zero potential vector field X and k
being positive, the foregoing equation implies h = 0 and hence M is K-contact.
Therefore, equation (4.6) shows that QZ = AZ. Using (2.9) it follows that
A = 2n. Thus, M is Einstein with Einstein constant 2n. So, we can apply the
result of Boyer-Galicki [5] which states that “any compact K-contact Einstein
manifold is Sasakian” to conclude the proof. O

For a K-contact manifold it is known that Q& = 2n&. Thus, from the above
theorem we have the following:
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Corollary 4.1. If a complete K-contact metric represents a non-trivial k-
almost Ricci soliton with non-zero potential vector field X collinear with the
Reeb vector field &, then it is Finstein and Sasakian.

Next, replacing the “compact H-contact” of the previous theorem by the
commutativity condition Q@ = @ we prove:

Theorem 4.2. Let M?"*1(p,£,1m,9) be a contact metric manifold satisfying
Qe = ¢Q. If g represents a non-trivial k-almost Ricci soliton with nonzero
potential vector field X collinear with the Reeb vector field &, then M is Einstein
and K -contact. In addition, if M is complete, then it is compact Sasakian.

Proof. The commutativity condition Qy = ¢Q together with (2.6) and & =0
shows that Q¢ = (Trl)€. Further, since the potential vector field X is collinear
with the Reeb vector field £, from equations (4.1) to (4.9) are also valid here.
Now we replace Z by ¢Z in (4.6) and using h§ = 0 we get

(4.10) QoZ — (kp)hZ = N Z.
On the other hand, operating (4.6) by ¢ and using hp = —ph we obtain
(4.11) WQZ + (kp)hZ = NpZ.

Adding (4.10) and (4.11) along with Q¢ = ¢Q gives QpZ = ApZ. Therefore,
replacing Z by ¢Z in the last equation and using Q¢ = (Trl)¢, we deduce
QZ = Z + (Trl— Mn(Z)€. Since A = Trl (follows from (4.4), as Ep = 0), the
foregoing equation implies QZ = AZ and hence M is Einstein. Consequently,
the scalar curvature r and A are constant. Thus, from (4.9), it follows that
(kp)|h|*> = 0. Since k is positive and the soliton vector field X is non-zero,
we can conclude that h = 0, and hence M is K-contact. From these, we see
that M is K-contact and Einstein with Einstein constant 2n. Now, if M is
complete, then applying Myers’ Theorem M becomes compact. Finally, using
Boyer-Galicki’s Theorem [5] we conclude the proof. O
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