• Title/Summary/Keyword: Gorenstein

Search Result 77, Processing Time 0.025 seconds

ON THE STRUCTURE OF THE GRADE THREE PERFECT IDEALS OF TYPE THREE

  • Choi, Eun-Jeong;Kang, Oh-Jin;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2008
  • Buchsbaum and Eisenbud showed that every Gorenstein ideal of grade 3 is generated by the submaximal order pfaffians of an alternating matrix. In this paper, we describe a method for constructing a class of type 3, grade 3, perfect ideals which are not Gorenstein. We also prove that they are algebraically linked to an even type grade 3 almost complete intersection.

GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES UNDER BASE CHANGE WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.497-505
    • /
    • 2021
  • Let R → S be a ring homomorphism. The relations of Gorenstein projective dimension with respect to a semidualizing module of homologically bounded complexes between U ⊗LR X and X are considered, where X is an R-complex and U is an S-complex. Some sufficient conditions are given under which the equality ${\mathcal{GP}}_{\tilde{C}}-pd_S(S{\otimes}{L \atop R}X)={\mathcal{GP}}_C-pd_R(X)$ holds. As an application it is shown that the Auslander-Buchsbaum formula holds for GC-projective dimension.

MODEL STRUCTURES AND RECOLLEMENTS INDUCED BY DUALITY PAIRS

  • Wenjing Chen;Ling Li;Yanping Rao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.405-423
    • /
    • 2023
  • Let (𝓛, 𝒜) be a complete duality pair. We give some equivalent characterizations of Gorenstein (𝓛, 𝒜)-projective modules and construct some model structures associated to duality pairs and Frobenius pairs. Some rings are described by Frobenius pairs. In addition, we investigate special Gorenstein (𝓛, 𝒜)-projective modules and construct some model structures and recollements associated to them.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • Kang, Oh-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1379-1410
    • /
    • 2017
  • Kang and Ko introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4. Let $R=k[w_0,\;w_1,\;w_2,\;{\ldots},\;w_m]$ be the polynomial ring over an algebraically closed field k with indetermiantes $w_l$ and deg $w_l=1$, and $I_i$ a homogeneous perfect ideal of grade 3 with type $t_i$ defined by a skew-symmetrizable matrix $G_i(1{\leq}t_i{\leq}4)$. We show that for m = 2 the Hilbert function of the zero dimensional standard k-algebra $R/I_i$ is determined by CI-sequences and a Gorenstein sequence. As an application of this result we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence $h(R/H_i)=(1,\;4,\;h_2,\;{\ldots},\;h_s)$ is unimodal, where $H_i$ is the sum of homogeneous perfect ideals $I_i$ and $J_i$ which are geometrically linked by a homogeneous regular sequence z in $I_i{\cap}J_i$.