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MODEL STRUCTURES AND RECOLLEMENTS INDUCED

BY DUALITY PAIRS
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Abstract. Let (L,A) be a complete duality pair. We give some equiv-
alent characterizations of Gorenstein (L,A)-projective modules and con-

struct some model structures associated to duality pairs and Frobenius

pairs. Some rings are described by Frobenius pairs. In addition, we inves-
tigate special Gorenstein (L,A)-projective modules and construct some

model structures and recollements associated to them.

1. Introduction

The notion of duality pairs of R-modules was introduced by Holm and
Jørgensen in [16]. Duality pairs exist extensively (see for example [13, 14, 16,
19]). Duality pairs are closely related to purity and the existence of covers
and envelopes (see [16, Theorem 3.1]), which implies that duality pairs are
very useful in relative homological algebra. Gillespie investigated Gorenstein
homological algebra with respect to a complete duality pair and constructed
some relevant model structures in [13]. It was found that complete duality
pairs induce abelian model structures for stable module categories. Motivated
by this, we continue to study Gorenstein homological algebra with respect to
a duality pair and we construct model structures from an R-module that is
strongly Gorenstein projective with respect to a given complete duality pair
(L,A).

In [10], Gillespie introduced exact model structures in exact categories and
gave a correspondence between the exact model structure and two complete
cotorsion pairs, called Hovey-Gillespie correspondence in [1]. Based on this
fact, Becerril and coauthors showed how to construct an exact model structure
from a Frobenius pair in [1], which tells us that Frobenius pairs also have a great
importance in constructing model structures. In this direction, the first author
of this paper and coauthors have tried to find Frobenius pairs by Gorenstein
objects with respect to cotorsion pairs and obtained some interesting results in
[5]. Wang and coauthors introduced and studied Gorenstein flat modules with
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respect to duality pairs in [19], which enriches Gorenstein homological algebra
with respect to a duality pair. It is well known that a perfect duality pair can
induce a perfect cotorsion pair, which builds a bridge between duality pairs
and cotorsion pairs. In this paper, we get some model structures associated to
duality pairs and Frobenius pairs by applying some known results in [5] and
[19], and give some characterizations of rings by Frobenius pairs.

The recollement of triangulated categories was introduced by Beilinson,
Bernstein and Deligne in a geometric setting in [2], which plays an important
role in algebraic geometry and in representation theory. Gillespie described a
general correspondence between projective (injective) recollements of triangu-
lated categories and projective (injective) cotorsion pairs in [12]. This provides
a model category description of these recollement situations. In this paper,
we investigate special Gorenstein (L,A)-projective modules, called strongly
Gorenstein (L,A)-projective modules. We prove that for a strongly Goren-
stein (L,A)-projective module G, (⊥(G⊥), G⊥) is a projective cotorsion pair,
cogenerated by a set. Based on this result, we construct some recollements.
These recollements involve complexes built from G⊥ or ⊥(G⊥). In particular,
when (L,A) is the level duality pair, one can get some specific examples.

This paper is organized as follows. In Section 2, we give some notions and ba-
sic facts. In Section 3, we give some equivalent characterizations of Gorenstein
(L,A)-projective modules and construct some model structures. Moreover, we
describe some rings by Frobenius pairs. In Section 4, we investigate strongly
Gorenstein (L,A)-projective modules and construct some model structures and
recollements associated to them.

2. Preliminaries

We recall some notions and basic facts which we need in the later sections.

Frobenius pairs. Let C be an abelian category, X , Y ⊆ C two classes of
objects of C which can be also regarded as full subcategories of C, and M ,
N objects in C. The relative projective dimension of M with respect to X is
defined as pdX (M) = min{n ⩾ 0 |ExtjC(M,X ) = 0 for every j > n}. The
relative injective dimension of N with respect to Y is defined as idY(N) =

min{n ⩾ 0 |ExtjC(Y, N) = 0 for every j > n}. Furthermore, we set pdXY =
sup{pdX (Y ) |Y ∈ Y} and idXY = sup{idX (Y ) |Y ∈ Y}.

The class X is left thick if it is closed under direct summands, extensions
and kernels of epimorphisms in C. X is thick if it is left thick and closed
under cokernels of monomorphisms in C. Let (X , ω) be a pair of classes of
objects in C. It is said that ω is X -injective if idXω = 0. ω is called a relative
cogenerator in X if ω ⊆ X and for any X ∈ X , there exists a short exact
sequence 0 → X → W → X

′ → 0 with W ∈ ω and X
′ ∈ X . Definitions

of X -projective and a relative generator in X are dual. (X , ω) is called a left
Frobenius pair if X is a left thick class, ω is an X -injective relative cogenerator
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in X and ω is closed under direct summands in C. A left Frobenius pair (X , ω)
is strong if ω is an X -projective relative generator in X .

The X -resolution dimension of M is the smallest non-negative integer n such
that there is an exact sequence 0 → Xn → · · · → X0 → M → 0 with each
Xi ∈ X . If such n doesn’t exist, we say that the X -resolution dimension of M is
infinite. We denote by X∧ the class of objects in C having a finite X -resolution
dimension.

Let (X ,Y) be a pair of classes of objects in C and ω = X ∩ Y. We say that
(X ,Y) is a left Auslander-Buchweitz-context (left AB-context for short) if the
pair (X , ω) is a left Frobenius pair, Y is thick and Y ⊆ X∧.

Exact categories. An exact category is a pair (B, τ) consisting of an additive
category B and an exact structure τ on B. Elements of τ are called short exact
sequences.

An exact category (B, τ) is a Frobenius category if (B, τ) has enough pro-
jectives and enough injectives such that the projectives coincide with the in-
jectives. For any objects M, N ∈ B, let P(M,N) denote the abelian group of
morphisms from M to N factoring through some projective object. Further-
more, the stable category of B denotes B := B/P, where the objects of B are
the same as that of B and HomB(M,N) := HomB(M,N)/P(M,N). It is well
known that B is a triangulated category.

Recollements. Let T ′, T and T ′′ be triangulated categories. A recollement
of T relative to T ′ and T ′′ is a diagram of triangulated functors

T ′ i∗ // T
j∗ //

i!

]]

i∗

��
T ′′

j∗

]]

j!

��

satisfying the following conditions:
(R1) (i∗, i∗, i

!) and (j!, j
∗, j∗) are adjoint triples,

(R2) j∗i∗ = 0,
(R3) i∗, j! and j∗ are full embeddings,
(R4) any object X in T determines distinguished triangles i∗i

!X → X →
j∗j

∗X → (i∗i
!X)[1] and j!j

∗X → X → i∗i
∗X → (j!j

∗X)[1] (see [2]).

Cotorsion pairs. Let C be an abelian category. A cotorsion pair is a pair
(X ,Y) of classes of objects in C such that X⊥ = Y and X = ⊥Y, where
X⊥ = {C ∈ C |Ext1C(X,C) = 0, ∀ X ∈ X} and ⊥Y = {B ∈ C |Ext1C(B, Y ) =
0, ∀ Y ∈ Y}. A cotorsion pair (X ,Y) is said to be complete if it has enough
projectives and injectives, i.e., for any object C ∈ C, there are exact sequences
0 → Y → X → C → 0 and 0 → C → Y ′ → X ′ → 0, respectively, with
Y, Y ′ ∈ Y and X, X ′ ∈ X . A cotorsion pair (X ,Y) is said to be hereditary if
ExtiC(X,Y ) = 0 for all X ∈ X , Y ∈ Y and all i ⩾ 1. It follows from [12, Lemma
2.3] that for a hereditary cotorsion pair (X ,Y), X is closed under kernels of
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epimorphisms and Y is closed under cokernels of monomorphisms. In addition,
assume that C has enough projectives. We call a complete cotorsion pair (X ,Y)
a projective cotorsion pair if Y is thick and X ∩ Y coincides with the class of
projective objects.

Unless stated to the contrary, we assume in the following that R is an as-
sociative ring with an identity, and all modules are left R-modules. R-Mod
denotes the category of all left R-modules. P denotes the class of all projective
left R-modules. F denotes the class of all flat left R-modules. For an R-module
M , M+ := HomZ(M,Q/Z) denotes the character module of M and the module
M+ is a right R-module. For some unexplained results, we refer the reader to
[4, 8, 9, 15,17,18].

Complexes. A complex is a sequence of R-modules

C = · · · → C2
d2→ C1

d1→ C0
d0→ C−1

d−1→ C−2 → · · ·

together with homomorphisms such that dndn+1 = 0 for all n ∈ Z. The nth
cycle (nth boundary) of C is defined as Kerdn (Imdn+1) and is denoted by
Zn(C) (Bn(C)). C is called exact or acyclic if Kerdn = Imdn+1 for each n ∈ Z.
E denotes the class of all exact complexes. We use Ch(R) to denote the category
of complexes of R-modules.

Duality pairs. A duality pair over R is a pair (L,A), where L is a class of
left R-modules and A is a class of right R-modules, satisfying the following
conditions:

(1) L ∈ L if and only if L+ ∈ A.
(2) A is closed under direct summands and finite direct sums.
A duality pair (L,A) is called perfect if L contains the module RR, and is

closed under coproducts and extensions. {L,A} is a symmetric duality pair
over R if (L,A) and (A,L) are duality pairs. A duality pair (L,A) is complete
if {L,A} is a symmetric duality pair and (L,A) is a perfect duality pair over
R.

Throughout this paper, (L,A) stands for a complete duality pair.

3. Gorenstein homological algebra relative to a duality pair and
model structures

The goal of this section is to investigate Gorenstein homological algebra
with respect to a given complete duality pair (L,A) and construct some model
structures.

An R-module M is called Gorenstein (L,A)-projective if there exists a
HomR(−,L)-exact exact sequence

P : · · · → P1 → P0 → P−1 → P−2 → · · ·

with each Pi ∈ P such that M ∼= Ker(P−1 → P−2). GP denotes the class of all
Gorenstein (L,A)-projective modules (see [13]). It is clear that all the kernels,
the images and the cokernels of P are in GP. ExtiR(M,L) = 0 for any L ∈ L and
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any i ⩾ 1. P ⊆ GP via the exact sequence 0 → P
1→ P → 0 for any P ∈ P.

It follows from [13] that GP is closed under direct sums, extensions, direct
summands and kernels of epimorphisms. Since the perfect duality pair (L,A)
implies P ⊆ F ⊆ L by [13, Proposition 2.3], a Gorenstein (L,A)-projective
module is Ding projective, and of course, it is Gorenstein projective (see [6,7]).
We use DP and GP(R) to denote the class of all Ding projective modules and
the class of all Gorenstein projective modules, respectively.

The following result gives some equivalent characterizations of Gorenstein
(L,A)-projective modules.

Proposition 3.1. For any R-module M , the following conditions are equiva-
lent.

(1) M is a Gorenstein (L,A)-projective module.
(2) There exists a HomR(−,L)-exact exact sequence

0 → M → P−1 → P−2 → P−3 → · · ·

with each Pi ∈ P and ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1.
(3) There exists an exact sequence 0 → M → P → G → 0 with P ∈ P and

G ∈ GP.
(4) There exists an exact sequence 0 → G1 → G0 → M → 0 with G1, G0 ∈

GP and Ext1R(M,L) = 0 for any L ∈ L.
(5) There exists a HomR(−,L)-exact exact sequence

0 → M → G−1 → G−2 → G−3 → · · ·

with each Gi ∈ GP and ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1.
(6) There exists a HomR(−,L)-exact exact sequence

P : · · · → G1 → G0 → G−1 → G−2 → · · ·

with each Gi ∈ GP such that M ∼= Ker(G−1 → G−2).
(7) There exists some class of R-modules U with P ⊆ U ⊆ GP and there

exists a HomR(−,L)-exact exact sequence

0 → M → U−1 → U−2 → U−3 → · · ·

with each Ui ∈ U and ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1.
(8) There exists some class of R-modules U with P ⊆ U ⊆ GP and there

exists a HomR(−,L)-exact exact sequence

P : · · · → U1 → U0 → U−1 → U−2 → · · ·

with each Ui ∈ U such that M ∼= Ker(U−1 → U−2).

Proof. (1) ⇒ (2) It is clear.
(2) ⇒ (1) Pick a projective resolution of M , · · · → P1 → P0 → M → 0. By

(2), the exact sequence

· · · → P1 → P0 → P−1 → P−2 → · · ·
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is HomR(−,L)-exact and each Pi ∈ P. Thus M is a Gorenstein (L,A)-
projective module.

(1) ⇒ (3) Since M is a Gorenstein (L,A)-projective module, there exists a
HomR(−,L)-exact exact sequence

P : · · · → P1 → P0 → P−1 → P−2 → · · ·

with each Pi ∈ P such that M ∼= Ker(P−1 → P−2). Let P = P−1 and
G = Ker(P−2 → P−3). Then 0 → M → P → G → 0 is an exact sequence with
P ∈ P and G ∈ GP, as desired.

(3) ⇒ (2) Since G ∈ GP, there exists a HomR(−,L)-exact exact sequence

0 → G → P−1 → P−2 → P−3 → · · ·

with each Pi ∈ P and ExtiR(G,L) = 0 for any L ∈ L and any i ⩾ 1. Then the
exact sequence 0 → M → P → G → 0 is HomR(−,L)-exact and ExtiR(M,L) =
0 for any L ∈ L and any i ⩾ 1 by dimension shift. So the exact sequence

0 → M → P → P−1 → P−2 → P−3 → · · ·

is HomR(−,L)-exact with P ∈ P and each Pi ∈ P and ExtiR(M,L) = 0 for
any L ∈ L and any i ⩾ 1.

(1) ⇒ (4) It is clear.
(4) ⇒ (1) Since G1 ∈ GP, there exists an exact sequence 0 → G1 → P →

G → 0 with P ∈ P and G ∈ GP. Consider the following pushout diagram:

0

��

0

��
0 // G1

��

// G0

��

// M // 0

0 // P

��

// X

��

// M // 0

G

��

G

��
0 0

Since G0, G ∈ GP and GP is closed under extensions, X ∈ GP. The sequence
0 → P → X → M → 0 is split since Ext1R(M,P ) = 0. Then M is a direct
summand of X. So M is a Gorenstein (L,A)-projective module.

(2) ⇒ (5) It immediately follows from P ⊆ GP.
(5) ⇒ (2) By assumption, there exists a HomR(−,L)-exact exact sequence

0 → M → G−1 → K−1 → 0, where we put K−1 = Ker(G−2 → G−3) for
the exact sequence in (5). Since G−1 ∈ GP, there exists an exact sequence
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0 → G−1 → P−1 → G → 0 with P−1 ∈ P and G ∈ GP. Consider the following
pushout diagram:

0

��

0

��
0 // M // G−1

��

// K−1

��

// 0

0 // M // P−1

��

// X

��

// 0

G

��

G

��
0 0

One easily checks that 0 → M → P−1 → X → 0 is HomR(−,L)-exact and
ExtiR(X,L) = 0 for any L ∈ L and any i ⩾ 1. Pick an exact sequence 0 →
K−1 → G−2 → K−2 → 0 with K−2 = Ker(G−3 → G−4). Consider the
following pushout diagram:

0

��

0

��
0 // K−1

��

// X

��

// G // 0

0 // G−2

��

// Y

��

// G // 0

K−2

��

K−2

��
0 0

Since G−2, G ∈ GP, Y ∈ GP. Because 0 → K−1 → G−2 → K−2 → 0 is
HomR(−,L)-exact, G ∈ GP and Snake lemma, 0 → X → Y → K−2 → 0
is HomR(−,L)-exact. By repeating this process, we get a HomR(−,L)-exact
exact sequence

0 → M → P−1 → P−2 → P−3 → · · ·
with each Pi ∈ P.

(1) ⇒ (6) It immediately follows from the definition of Gorenstein (L,A)-
projective modules and P ⊆ GP.
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(6)⇒ (5) By assumption, one easily gets a HomR(−,L)-exact exact sequence

0 → M → G−1 → G−2 → G−3 → · · ·

with each Gi ∈ GP. By Five lemma and dimension shift, one can obtain that
ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1.

(2) ⇒ (7) One can set U = P.
(7) ⇒ (5) It immediately follows from U ⊆ GP.
(1) ⇒ (8) Set U = P. It immediately follows from the definition of Goren-

stein (L,A)-projective modules.
(8) ⇒ (6) It immediately follows from U ⊆ GP. This completes the proof.

□

Denote ⊥∞L := {X ∈ R-Mod |ExtiR(X,L) = 0, ∀ L ∈ L and ∀ i ⩾ 1}. It is
easy to see that ⊥∞L is the class of L-projective modules.

Proposition 3.2. Assume that L is closed under kernels of epimorphisms.
Then GP = DP ∩ ⊥∞L.

Proof. It is easy to see that GP ⊆ DP ∩ ⊥∞L. Next, let M ∈ DP ∩ ⊥∞L.
Then there is an exact sequence 0 → M → P0 → M0 → 0 with P0 ∈ P and
M0 ∈ DP, and ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1. One can get
ExtiR(M0, L) = 0 for any L ∈ L and any i ⩾ 2. We have an exact sequence
0 → L0 → P → L → 0 with P ∈ P. By assumption, L0 ∈ L. We get an
exact sequence 0 = Ext1R(M0, P ) → Ext1R(M0, L) → Ext2R(M0, L0) = 0. Thus
Ext1R(M0, L) = 0. Note that M0 ∈ DP ∩⊥∞L. Continuing this process, we get
a HomR(−,L)-exact exact sequence 0 → M → P0 → P−1 → P−2 → · · · with
each Pi ∈ P. By Proposition 3.1, M is a Gorenstein (L,A)-projective module.
Therefore, GP = DP ∩ ⊥∞L. □

Remark 3.3. Suppose that L is closed under kernels of epimorphisms. With
the similar method in the proof of Proposition 3.2, one can get that GP =
GP(R) ∩ ⊥∞L.

Proposition 3.4. Let M be a Gorenstein (L,A)-projective module. Then the
following conditions are equivalent.

(1) M is projective.
(2) M is of finite projective dimension.
(3) M is flat.
(4) M is of finite flat dimension.
(5) M is in L.
(6) M is of finite L-resolution dimension.

Proof. (1) ⇒ (2), (1) ⇒ (3) ⇒ (5), (3) ⇒ (4) and (5) ⇒ (6) are obvious.
(2) ⇒ (1) Assume pdRM = n < ∞. Since M is a Gorenstein (L,A)-

projective module, there exists an exact sequence

0 → Gn → Pn−1
dn−1→ Pn−2

dn−2→ · · · → P2
d2→ P1

d1→ P0
d0→ M → 0
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with each Pi ∈ P and each Ker di ∈ GP. Then Gn is projective. Put Gn−1 =
Ker dn−2. Note that 0 → Gn → Pn−1 → Gn−1 → 0 is split. Then Gn−1 is
projective. Repeating this process, we get that M is projective.

(4) ⇒ (1) It can be immediately given by the similar way in (2) ⇒ (1).
(6) ⇒ (5) Let the L-resolution dimension of M be n. Then there exists an

exact sequence

0 → Ln → Ln−1 → Ln−2 → · · · → L2 → L1 → L0 → M → 0

with each Li ∈ L. Since Ln, Ln−1 ∈ L and M ∈ GP, by dimension shift, we
have ExtiR(M,Kn−1) = 0 for all i ⩾ 1, where Kn−1 = Im(Ln−1 → Ln−2). By
continuing this process, Ext1R(M,K1) = 0 where K1 = Im(L1 → L0). Then
0 → K1 → L0 → M → 0 splits. Since (L,A) is a complete duality pair, L is
closed under direct summands. Then M ∈ L.

At last, we prove (5) ⇒ (1). Since M is a Gorenstein (L,A)-projective
module, there exists an exact sequence 0 → M → P → G → 0 with P ∈ P and
G ∈ GP by Proposition 3.1. By assumption, M ∈ L, Ext1R(G,M) = 0, and
hence 0 → M → P → G → 0 splits. So M is projective. □

The proposition above shows that GP ∩ P∧ = GP ∩ F∧ = GP ∩ L∧ =
GP ∩ L = GP ∩ F = P, which is useful in the sequel.

Remark 3.5. If R has finite weak global dimension, then M is Gorenstein
(L,A)-projective if and only if M is projective. For instance, a Gorenstein
(L,A)-projective module is projective over the von Neumann regular ring.
In particular, if R has finite global dimension, then M is Gorenstein (L,A)-
projective if and only if M is projective.

Since GP is closed under extensions, it follows from [18, 4.1] that (GP, τ) is
an exact category, where τ denotes the class of all exact sequences of the form
0 → L → M → N → 0 with all terms in GP. If readers want to know more
details about exact categories, please refer to [4, 10]. Next, we will devote to
showing that GP∧ is closed under extensions. Further, (GP∧, τ) is an exact
category.

Proposition 3.6. Let n be the GP-resolution dimension of M . Then for each

exact sequence 0 → Kn → Pn−1 → · · · → P1 → P0
d0→ M → 0 with each

Pi ∈ P, Kn is Gorenstein (L,A)-projective.

Proof. By assumption, there exists an exact sequence 0 → Gn → Gn−1 →
· · · → G1

g1→ G0
g0→ M → 0 with each Gi ∈ GP. For the exact sequence

0 → Kn → Pn−1 → · · · → P1 → P0
d0→ M → 0, since each Pi ∈ P, there is a
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commutative diagram

0 // Kn

fn

��

// Pn−1

fn−1

��

// · · · // P1

f1

��

// P0

f0

��

d0 // M // 0

0 // Gn
// Gn−1

// · · · // G1
g1 // G0

g0 // M // 0

such that the mapping cone is exact. We have the following commutative
diagram

0 // 0

��

// 0

��

// · · · // 0

��

// M

α

��

1 // M // 0

0 // Kn
// Gn ⊕ Pn−1

// · · · // G1 ⊕ P0
β // G0 ⊕M

(1,0)

��

(g0,1) // M

��

// 0

0 // Kn
// Gn ⊕ Pn−1

// · · · // G1 ⊕ P0
(g1,f0) // G0

// 0 // 0

where α = ( 01 ) and β =
(

g1 f0
0 −d0

)
. In fact, this is a short exact sequence of

complexes. Thus the sequence 0 → Kn → Gn ⊕ Pn−1 → · · · → G2 ⊕ P1 →
G1 ⊕ P0 → G0 → 0 is exact with G0 ∈ GP and each Gi ⊕ Pi−1 ∈ GP.
Because GP is closed under kernels of epimorphisms, Kn is Gorenstein (L,A)-
projective. □

Proposition 3.7. GP∧ is closed under extensions.

Proof. By Proposition 3.6, it is obtained by a version of the Horseshoe lemma.
□

We recall Hovey-Gillespie correspondence (refer to [10, Theorem 3.3]). As-
sume that (B, τ) is an exact category with an exact model structure. Let Q be
the class of cofibrant objects, R the class of fibrant objects and W the class of
trivial objects. Then W is a thick subcategory of B and both (Q,R∩W) and
(Q∩W,R) are complete cotorsion pairs in B. If (B, τ) is weakly idempotent
complete, then the converse holds. That is, given a thick subcategory W and
classes Q and R making (Q,R∩W) and (Q∩W,R) complete cotorsion pairs,
then there is an exact model structure on B, where Q is the class of cofibrant
objects, R is the class of fibrant objects and W is the class of trivial objects.
Hence, we denote an exact model structure as a triple (Q,W,R), and call it a
Hovey triple. If readers want to further learn model structures, please refer to
[10–13,17].

Example 3.8. (GP,P∧) is a left AB-context in R-Mod. Furthermore, (GP,P)
is a strong left Frobenius pair by [1, Proposition 6.10]. In addition, GP is a
Frobenius category with P a class of relative projective-injective objects and
GP := GP/P is a triangulated category. There exists a Frobenius model struc-
ture (GP,P,GP) on the exact category GP, where P is the class of trivial
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objects, and GP is both the class of cofibrant objects and the class of fibrant
objects. There exists an exact model structure (GP,P∧,GP∧) on the exact
category GP∧, where GP is the class of cofibrant objects, P∧ is the class of
trivial objects and GP∧ is the class of fibrant objects.

Remark 3.9. The canonical example of a complete duality pair is the level du-
ality pair (L,A) over any ring, given in [3], where L represents the class of level
modules and A represents the class of absolutely clean modules. In this case,
the class of Gorenstein (L,A)-projective modules coincides with the class of
Gorenstein AC-projective modules, denoted by GacP (refer to [3]). We obtain
that (GacP,P∧) is a left AB-context in R-Mod. (GacP,P) is a strong left Frobe-
nius pair by [1, Corollary 6.11]. Furthermore, GacP is a Frobenius category with
P a class of relative projective-injective objects and hence GacP := GacP/P is
a triangulated category. Moreover, there exists a Frobenius model structure
(GacP,P,GacP) on the exact category GacP and there exists an exact model
structure (GacP,P∧,GacP∧) on the exact category GacP∧.

Actually, one can get that (GP,F) and (GP,L) are left Frobenius pairs
when F ⊆ GP and L ⊆ GP, respectively. In the following, we give some
characterizations of rings via Frobenius pairs.

Recall that R is a left perfect ring if every flat left R-module is projective.

Proposition 3.10. The following conditions are equivalent for any ring R.
(1) (GP,F) is a strong left Frobenius pair.
(2) (GP,F) is a left Frobenius pair.
(3) R is a left perfect ring.

Proof. (1) ⇒ (2) It is straightforward.
(2) ⇒ (3) Assume that (GP,F) is a left Frobenius pair. Then F is a relative

cogenerator in GP. For any M ∈ F , there exists an exact sequence 0 → M →
P → G → 0 with P ∈ P and G ∈ GP by Proposition 3.1. The sequence
0 → M → P → G → 0 splits since Ext1R(G,M) = 0. Then M is projective. So
R is a left perfect ring.

(3) ⇒ (1) When R is a left perfect ring, F is exactly P. It immediately
follows from [1, Proposition 6.10]. □

Similarly, we obtain the next result.

Proposition 3.11. The following conditions are equivalent for any ring R.
(1) (GP,L) is a strong left Frobenius pair.
(2) (GP,L) is a left Frobenius pair.
(3) L = P.
In this case, R is a left perfect ring.

It is known that R is a right coherent ring if and only if all level left R-
modules are flat.
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Example 3.12. Let (L,A) be the level duality pair over any ring R. Then
the following conditions are equivalent.

(1) (GacP,L) is a strong left Frobenius pair.
(2) (GacP,L) is a left Frobenius pair.
(3) L = P.
(4) R is a right coherent and left perfect ring.

An R-module M is called Gorenstein (L,A)-flat if there exists an A⊗R−-
exact exact sequence

F : · · · → F1 → F0 → F−1 → F−2 → · · ·

with each Fi ∈ F such that M ∼= Ker(F−1 → F−2). GF denotes the class of
all Gorenstein (L,A)-flat modules (see [13]).

Many scholars have been interested in when Gorenstein projective mod-
ules are Gorenstein flat for two decades. However, when Gorenstein (L,A)-
projective modules are Gorenstein (L,A)-flat is trivial.

Remark 3.13. By [3, Theorem A.6], HomR(P,L) is exact if and only if A⊗RP
is exact, where P is an exact sequence of projective modules. It follows from
definitions of Gorenstein (L,A)-projective and Gorenstein (L,A)-flat modules
that Gorenstein (L,A)-projective modules are Gorenstein (L,A)-flat over any
ring. In particular, Gorenstein AC-projective modules are Gorenstein AC-flat.

In [19], the authors introduced and studied a kind of Gorenstein (X ,Y)-flat
modules with respect to two classes of modules X and Y. An R-module M is
called Gorenstein (X ,Y)-flat if there exists a Y⊗R−-exact exact sequence

X : · · · → X1 → X0 → X−1 → X−2 → · · ·

with each Xi ∈ X such that M ∼= Ker(X−1 → X−2). Denote GF(X ,Y)(R) the
class of all Gorenstein (X ,Y)-flat modules.

Remark 3.14. It is well known that P ⊆ GP ⊆ GF and P ⊆ F ⊆ GF . If X = L
and Y = A, then P ⊆ F ⊆ L ⊆ GF(L,A)(R) and GP ⊆ GF ⊆ GF(L,A)(R).
Furthermore, if L is the class of flat left R-modules andA is the class of injective
right R-modules over a right Noetherian ring, then GF = GF(L,A)(R).

Complete cotorsion pairs play an important role in constructing model struc-
tures. When (L,A) is a perfect duality pair, (L,L⊥) is a perfect cotorsion
pair. This fact builds the bridge between duality pairs and cotorsion pairs. In
[19, Proposition 2.18], the authors gave some equivalent characterizations of
GF(X ,Y)(R) under some conditions, where (X ,Y) is a complete duality pair.
Let (U ,V) be a complete and hereditary cotorsion pair. An R-module M is
called Gorenstein U-object if there exists a HomR(−,U ∩ V)-exact exact se-
quence

U : · · · → U1 → U0 → U−1 → U−2 → · · ·
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with each Ui ∈ U such that M ∼= Ker(U−1 → U−2). Gorenstein U-objects
with respect to a complete and hereditary cotorsion pair (U ,V) were intro-
duced in [20]. Denote G(U) the class of Gorenstein U-objects. We observe that
GF(X ,Y)(R) is exactly G(X ) under the conditions of [19, Proposition 2.18]. So
one will obtain exact model structures associated to GF(X ,Y)(R).

Theorem 3.15. Let (X ,Y) be a complete duality pair, X closed under kernels

of epimorphisms and TorRi (Y,X) = 0 for all Y ∈ Y, X ∈ X and all i ⩾ 1.
Then (X ,X ∩ X⊥) is a left Frobenius pair and (GF(X ,Y)(R), (X ∩ X⊥)∧) is

a left AB-context in R-Mod. Furthermore, assume that X⊥ is closed under
kernels of epimorphisms. Then (GF(X ,Y)(R) ∩ X⊥,X ∩ X⊥) is a strong left

Frobenius pair, GF(X ,Y)(R) ∩X⊥ is a Frobenius category with X ∩ X⊥ a class

of relative projective-injective objects and GF(X ,Y)(R) ∩ X⊥ := GF(X ,Y)(R) ∩
X⊥/X ∩ X⊥ is a triangulated category. In addition, there exists a Frobe-
nius model structure (GF(X ,Y)(R) ∩ X⊥,X ∩ X⊥,GF(X ,Y)(R) ∩ X⊥) on the

exact category GF(X ,Y)(R) ∩ X⊥, and there exists an exact model structure

(GF(X ,Y)(R) ∩ X⊥, (X ∩ X⊥)∧, (GF(X ,Y)(R) ∩ X⊥)∧) on the exact category

(GF(X ,Y)(R) ∩X⊥)∧, where GF(X ,Y)(R) ∩X⊥ is the class of cofibrant objects,

(X ∩ X⊥)∧ is the class of trivial objects and (GF(X ,Y)(R) ∩ X⊥)∧ is the class
of fibrant objects.

Proof. For one thing, since (X ,Y) is a perfect duality pair, (X ,X⊥) is a perfect
cotorsion pair by [16, Theorem 3.1]. Naturally, (X ,X⊥) is a complete cotorsion
pair. For another, since X is closed under kernels of epimorphisms, (X ,X⊥)
is a hereditary cotorsion pair by [12, Lemma 2.4]. (X ,X⊥) is a complete and
hereditary cotorsion pair. Then ExtiR(X,Z) = 0 for all X ∈ X , Z ∈ X⊥ and
all i ⩾ 1. So idXX ∩ X⊥ = 0, namely, X ∩ X⊥ is X -injective. For any X ∈ X ,
there exists an exact sequence 0 → X → Z → X

′ → 0 with Z ∈ X⊥ and
X

′ ∈ X by the completeness of (X ,X⊥). Because X is closed under extensions,
Z ∈ X ∩ X⊥. Thus X ∩ X⊥ is a relative cogenerator in X . Note that X is left
thick and X ∩ X⊥ is closed under direct summands. So (X ,X ∩ X⊥) is a left
Frobenius pair. By [19, Proposition 2.18], M is in GF(X ,Y)(R) if and only if
there exists an exact sequence of left R-modules in X

X : · · · → X1 → X0 → X−1 → X−2 → · · ·

such that M ∼= Ker(X−1 → X−2) and HomR(−,X ∩ X⊥) leaves the sequence
exact. One can obtain that GF(X ,Y)(R) is exactly G(X ). By [5, Proposi-

tion 4.1], (GF(X ,Y)(R), (X ∩ X⊥)∧) is a left AB-context in R-Mod. Now, as-

sume that X⊥ is closed under kernels of epimorphisms. By [5, Theorem 4.2],
(GF(X ,Y)(R) ∩ X⊥,X ∩ X⊥) is a strong left Frobenius pair, GF(X ,Y)(R) ∩ X⊥

is a Frobenius category with X ∩ X⊥ a class of relative projective-injective
objects and GF(X ,Y)(R) ∩ X⊥ := GF(X ,Y)(R) ∩ X⊥/X ∩ X⊥ is a triangu-

lated category. Thus there exists a Frobenius model structure (GF(X ,Y)(R) ∩
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X⊥,X ∩ X⊥,GF(X ,Y)(R) ∩ X⊥) on the exact category GF(X ,Y)(R) ∩ X⊥, and
there exists an exact model structure

(GF(X ,Y)(R) ∩ X⊥, (X ∩ X⊥)∧, (GF(X ,Y)(R) ∩ X⊥)∧)

on the exact category (GF(X ,Y)(R)∩X⊥)∧, where GF(X ,Y)(R)∩X⊥ is the class

of cofibrant objects, (X ∩ X⊥)∧ is the class of trivial objects and (GF(X ,Y)(R)∩
X⊥)∧ is the class of fibrant objects. □

4. Strongly Gorenstein (L,A)-projective modules

In this section, we introduce and investigate strongly Gorenstein (L,A)-
projective modules with respect to a given complete duality pair (L,A). Mean-
while, we attempt to construct some relevant model structures and recolle-
ments.

Definition 4.1. An R-module M is called strongly Gorenstein (L,A)-project-
ive if there exists a HomR(−,L)-exact exact sequence

P : · · · → P
f→ P

f→ P
f→ P

f→ · · ·

with P ∈ P such that M ∼= Ker f .

We use SGP to denote the class of all strongly Gorenstein (L,A)-projective
modules. One has SGP ⊆ GP. It is easy to obtain that SGP is closed under
direct sums.

In the following, we give some homological characterizations of SGP.

Proposition 4.2. For any R-module M , the following conditions are equiva-
lent.

(1) M is strongly Gorenstein (L,A)-projective.
(2) There exists a HomR(−,L)-exact exact sequence 0 → M → P → M → 0

with P ∈ P.
(3) There exists an exact sequence 0 → M → P → M → 0 with P ∈ P and

Ext1R(M,L) = 0 for all L ∈ L.
(4) There exists an exact sequence 0 → M → P → M → 0 with P ∈ P and

ExtiR(M,L) = 0 for all L ∈ L and all i ⩾ 1.

Proof. It is straightforward. □

Proposition 4.3. Every projective module P is strongly Gorenstein (L,A)-
projective.

Proof. For a projective module P , there exists a HomR(−,L)-exact exact se-

quence 0 → P
α→ P ⊕ P

(0,1)→ P → 0 with α = ( 10 ). By Proposition 4.2, P is
strongly Gorenstein (L,A)-projective. □

It is clear that P ⊆ SGP ⊆ GP ⊆ GF ⊆ GF(L,A)(R).
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Proposition 4.4. Let G be a strongly Gorenstein (L,A)-projective module.
Then the following statements hold.

(1) G⊥ is a thick subcategory of R-Mod.
(2) (⊥(G⊥), G⊥) is a projective cotorsion pair, cogenerated by a set.

Proof. (1) Obviously, G⊥ is closed under direct summands and extensions.
Let 0 → L → M → N → 0 be an exact sequence. At first, assume that
L ∈ G⊥ and M ∈ G⊥. Then there is an exact sequence 0 = Ext1R(G,M) →
Ext1R(G,N) → Ext2R(G,L). Since G is strongly Gorenstein (L,A)-projective,
there exists an exact sequence 0 → G → P → G → 0 with P ∈ P, which
induces an exact sequence 0 = Ext1R(G,L) → Ext2R(G,L) → Ext2R(P,L) = 0.
Then Ext2R(G,L) = 0 and hence Ext1R(G,N) = 0, that is N ∈ G⊥. Next,
assume that M ∈ G⊥ and N ∈ G⊥. Then there is an exact sequence 0 =
Ext1R(G,N) → Ext2R(G,L) → Ext2R(G,M)=0. Hence Ext2R(G,L) = 0. There
is an exact sequence 0 = Ext1R(P,L) → Ext1R(G,L) → Ext2R(G,L)=0. Then
Ext1R(G,L) = 0. So G⊥ is a thick subcategory of R-Mod.

(2) Put a set S = {G}. By [15, Theorem 6.11], (⊥(G⊥), G⊥) is a complete
cotorsion pair, cogenerated by the set S. Since P ⊆ L, P ⊆ G⊥. It follows
from [12, Proposition 3.7] that (⊥(G⊥), G⊥) is a projective cotorsion pair. □

Theorem 4.5. Let G be a strongly Gorenstein (L,A)-projective module. Then
there exists a hereditary abelian model structure (GP,W, G⊥) on R-Mod, where
W can be described in the following two ways:

W = {W ∈ R-Mod | ∃ an exact sequence 0 → W → A → B → 0

with B ∈ ⊥(G⊥), A ∈ GP⊥}

= {W ∈ R-Mod | ∃ an exact sequence 0 → A
′
→ B

′
→ W → 0

with B
′
∈ ⊥(G⊥), A

′
∈ GP⊥}.

Proof. By [13, Theorem 4.9], we know that (GP,GP⊥) is a projective cotorsion

pair. Because (GP,GP⊥) and (⊥(G⊥), G⊥) are two projective cotorsion pairs,

GP ∩ GP⊥ = P = ⊥(G⊥) ∩ G⊥. Since G ∈ SGP ⊆ GP, GP⊥ ⊆ G⊥ and
⊥(G⊥) ⊆ GP. It immediately follows from [11, Theorem 1.1]. □

Remark 4.6. When one chooses different strongly Gorenstein (L,A)-projective
module G, the different model structure may be obtained.

The following result gives relations between SGP and GP.

Proposition 4.7. For any R-module M , the following conditions are equiva-
lent.

(1) M is a Gorenstein (L,A)-projective module.
(2) M is a direct summand of some strongly Gorenstein (L,A)-projective

module.
(3) There exists a strongly Gorenstein (L,A)-projective module G such that

M ∈ ⊥(G⊥).
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Proof. (1) ⇒ (2) It is easy to prove this result.
(2) ⇒ (3) Let M be a direct summand of a strongly Gorenstein (L,A)-

projective module G. Then M ∈ ⊥(G⊥) since G ∈ ⊥(G⊥).
(3) ⇒ (1) By Proposition 4.4, we have an exact sequence 0 → M → P0 →

L0 → 0 with P0 ∈ G⊥ and L0 ∈ ⊥(G⊥). Thus P0 ∈ G⊥ ∩ ⊥(G⊥) = P.

Continuing this process, we get an exact sequence 0 → M → P0
f0→ P−1

f−1→
P−2

f−2→ · · · with each Pi ∈ P and each Ker fi ∈ ⊥(G⊥). Since L ⊆ G⊥, this
exact sequence is HomR(−,L)-exact. Note that (⊥(G⊥), G⊥) is a hereditary
cotorsion pair, so ExtiR(M,L) = 0 for any L ∈ L and any i ⩾ 1. By Proposition
3.1, M is a Gorenstein (L,A)-projective module. □

In the following, we recall some notions and basic facts.
Let S be a class of R-modules. A complex X is in dwS if Xj ∈ S for any

j ∈ Z.
An exact complex X is in exS if Xj ∈ S for any j ∈ Z.
An exact complex X is in S̃ if Zj(X) ∈ S for any j ∈ Z.
Let (S, T ) be a cotorsion pair in R-Mod. A complex Y is a dgS complex if

each Yj ∈ S for any j ∈ Z and if each map Y → U is null homotopic for each

complex U ∈ T̃ . The definition of a dgT complex is dual. We use dgS and dgT
to denote the class of all dgS complexes and the class of all dgT complexes
respectively.

By Proposition 4.4, we know that for a strongly Gorenstein (L,A)-projective
module G, (⊥(G⊥), G⊥) is a projective cotorsion pair, cogenerated by a set
{G}. It immediately follows from [12, Proposition 7.3] that there are six
projective cotorsion pairs in Ch(R), cogenerated by sets, namely, (dw⊥(G⊥),

(dw⊥(G⊥))⊥), (ex⊥(G⊥), (ex⊥(G⊥))⊥), (⊥̃(G⊥), dgG⊥), (⊥(dwG⊥), dwG⊥),

(⊥(exG⊥), exG⊥), and (dg⊥(G⊥), G̃⊥). Of course, for (P, R-Mod), there exist
four distinct projective cotorsion pairs in Ch(R). They are (dwP, (dwP)⊥),

(exP, (exP)⊥), (P̃,Ch(R)), and (dgP, E). In the following, we will use these
projective cotorsion pairs to construct some recollements.

Let G be a class of R-modules and (S, T ) a cotorsion pair in R-Mod. we
use D(R) to denote the derived category of R-modules, K(G) to denote the
homotopy category of G, Kex(G) to denote the homotopy category consisting
of exact complexes of G, K(dgS) to denote the homotopy category consisting
of dgS complexes, Kex(dgS) to denote the homotopy category consisting of
exact dgS complexes, K(⊥(dwT )) to denote the homotopy category consisting
of complexes in ⊥(dwT ), and K(⊥(exT )) to denote the homotopy category
consisting of complexes in ⊥(exT ).

Theorem 4.8. There exist five recollements associated to a strongly Gorenstein
(L,A)-projective module G, where three recollements are relative to the derived
category D(R) as follows:
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(1)

Kex(
⊥(G⊥)) // K(⊥(G⊥)) //
gg

zz
D(R),

ff

||

(2)

Kex(dg
⊥(G⊥)) // K(dg⊥(G⊥)) //
hh

yy
D(R),

gg

{{

(3)

K(⊥(dwG⊥)) // K(⊥(exG⊥)) //
hh

yy
D(R),

gg

{{

(4)

K(P) // K(⊥(G⊥)) //
ee

}}
K(⊥(dwG⊥)),

hh

zz

(5)

Kex(P) // K(⊥(G⊥)) //
ff

||
K(⊥(exG⊥)).

hh

zz

Proof. (1) We have projective cotorsion pairs (dw⊥(G⊥), (dw⊥(G⊥))⊥),
(ex⊥(G⊥), (ex⊥(G⊥))⊥), and (dgP, E). They satisfy that dgP ⊆ dw⊥(G⊥)
since P ⊆ ⊥(G⊥) and dw⊥(G⊥) ∩ E = ex⊥(G⊥). The first recollement follows
from [12, Theorem 4.7] and K(dgP) ∼= D(R).

(2) There are projective cotorsion pairs (dg⊥(G⊥), G̃⊥), (⊥̃(G⊥), dgG⊥),

and (dgP, E). We know that dgP ⊆ dg⊥(G⊥), dg⊥(G⊥) ∩ E = ⊥̃(G⊥), and
K(dgP) ∼= D(R). By [12, Theorem 4.7], the second recollement is obtained.

(3) Consider three projective cotorsion pairs (⊥(exG⊥), exG⊥), (⊥(dwG⊥),
dwG⊥), and (dgP, E). Since exG⊥ ⊆ E , we get dgP ⊆ ⊥(exG⊥). By [8, Theo-
rem 7.4.3], we have a Hovey triple (⊥(exG⊥), E , dwG⊥). Thus E ∩ ⊥(exG⊥) =
⊥(dwG⊥). By [12, Theorem 4.7], we get the third recollement.

(4) (dw⊥(G⊥), (dw⊥(G⊥))⊥), (dwP, (dwP)⊥), and (⊥(dwG⊥), dwG⊥) are
projective cotorsion pairs. By [12, Proposition 7.3], ⊥(dwG⊥) ⊆ dw⊥(G⊥).
However, dw⊥(G⊥) ∩ dwG⊥ = dw(⊥(G⊥) ∩G⊥) = dwP. Also, it immediately
follows from [12, Theorem 4.7].

(5) Pick three projective cotorsion pairs (dw⊥(G⊥), (dw⊥(G⊥))⊥), (exP,
(exP)⊥), and (⊥(exG⊥), exG⊥). We get that exG⊥∩dw⊥(G⊥) = (E∩dwG⊥)∩
dw⊥(G⊥) = E∩dw(⊥(G⊥)∩G⊥) = exP, and by [12, Proposition 7.3], ⊥(exG⊥)
⊆ dw⊥(G⊥). By [12, Theorem 4.7], we obtain the last recollement. This
completes the proof. □
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Remark 4.9. In this section, when (L,A) is the level duality pair, one can
obtain some specific results about GacP.
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