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1. Introduction

In this paper, we studied some properties of Gorenstein rings and complete inter-
sections in the Cohen-Macaulay ring.

It is well known that they play an important part as Noetherian rings in the
study of commutative algebra and algebraic geometry,

The study on Cohen-Macaulay rings has been remarkably developed by the concepts
of depth, grade, regular sequence and Krull dimension([2],[6],(97, 181 [193).

In particular, the study of relationship between injective dimension, global dimension
of rings and modules and homological algebra has occupied most of the studies of
Gorenstein rings([47, (161, (171).

In addition, complete intersection as a special case of Gorenstein ring has been
used in the study not of abelian varieties of dimension>»2 but of algebraic varieties in
algebraic geometryv([21,[127).

Main theorems of this paper is Theorem 4.3. and 4.8..

The detailed contents are as follows:

In section 2, we describe the definition and some properties which are necessary in
gection 3,4. Lemma 2.1. and 2.2. are necessary in proving the main theorems.

In section 3, we prove some properties of Gorenstein rings and complete intersec~
tions. Theorem 3.7. proves that if a Noetherian ring A is a Gorenstein ring, then
A[X] is a Gorenstein ring. In general, complete intersection is Gorenstein. Example
3.9. is a counter-example of the inverse of this theorem.

In section 4, which is the main part of this paper, we prove Theorem 4.3. and
Theorem 4.8..

Theorem 4.8. is asg follows:

Let (A, m) be a principal Noetherian local ring which is not a field. If Spec(A)

* This research was supported by (he research grant of the Ministry of Education, Korea
in 1988,
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is discrete, then (A,m) is a complete intersection.

2. Preliminaries

Let (A,m) be a Noetherian local ring, It follows that A is Artinian if and only if
dim(A) =0((15, 0107, 0131, (145, 0157). In this case, we have m"=( for some integer
70,

Let Spec(A) be the prime spectrum of a commutative ring A with 1.

Lemma 2.1. Let .1 be a Noetherian ring. Then Spec(A) is discrete if and only
if A is Artinian.

Proof. Suppose that Spec(A) is discrete. Then every element of Spac(A) is closed.
That is, every prime ideal of A is maximal ideal. Hence, dim(A4)=0.

Conversely, if /1 is Artinian then Spec(A4) is discrete since every prime ideal is

maximal in an Artinian ving A. ///

Lemma 2.2. Let (A.m) be an Artinian local ring which is not a field. Then every
ideal in A is principal if and only if dim.(m/m* =1, where % is the residue field
A/m.

Proof. If every ideal in A is principal, then w is principal ideal, and so dim,
{(m/m?)=1.

Conversely, if dim,(m/m?)=1], then m is a principal ideal({11), say m==(x). Let
@ be an ideal of A, other than () or (1). Then m is nilradical, hence m is nilpotent
and therefore there exist an integer » such that 60 m’, ®&m'*!; hence there exists
YEM such that y=ax’, y&:(x"*'); consequently, a® (x) and @ is a unit in A. Hence

A", mT=(a4")Z0L and therefore GL==m"==(x"). Hence i is principal. ///

Let A be a Noetherian semi-local ring and m=rad(A), the Jacobson radical of A.

An ideal @ is called an ideal of definition of A if m"COCm for some v>>0. This is

equivalent to saying that

Let (A, m) be a Noetherian local ring of dimension ». In this case, an ideal of
definition of A and a primary ideal belonging to m are same thing. Then we know
that no ideal of definition are generated by less than » elements, and that there are

ideals of definition generated by exactly » elements.

'—".22-"—



Gorenstein Rings and Complete Intersections 3

If (xy,+,5.) is an ideal of definition of A then we say that {x,-,x,} i3 a@ system

of parameters of A.

Definition 2.3. If there exists a system of parameters generating the maximal
ideal m, then we say that A is a regular local ring and we call such a system of

parameters a regular system of paramelers.

In a Noetherian local ring (A4, m), the number of elements of a minimal basis of
m is equal to rank,m/m?® where 2=A/m. We call rank,m/m? the embedding dimension

of A, and denote it by em.dim(A). In general, we have
dim(A)<em.dim(A)
and the equality holds if and only if A is regular({111,[137,(141,[151).

Definition 2.4. Let A be a commutative ring with 1 and let A/ be an A-module.
Then a,,--,a, is said to be an M-regular sequence or simply M-sequence if it satisfies
the following conditions:

(i) for each ¢ (1<Si<n), a; is not a zero-divisor on
Al/(dlﬁl“}‘“' +a,'-‘ﬂl), and

(ii) Ms=a M+ +a,M.
If {ay, -, @} 0, an ideal of A, then we say ay,--,a, is an M-regular sequence in
ot. If there is no any dc=0L such that a,,---,a,, b is an M-regular sequence in 0., then

ay, -+, a, i8 said to be a maximal M-regular sequence in 0.

Let A be a commutative ring with 1, and let x,, -, x, be in A. Then the complex
K. is defined as follows:

(i) K,=A,

(ii) for each p(1<p<n), K,=DPAe;,...,, isa free A-module of rank(?) generated
by the basis {e;,..., [1<i| <<, <n}.

(iii) for p>n, K,=0

(iv) the boundary (or differential) operator d: K,— K,., is defined by

4
. : - 2N — r-1 ;P s o .
d(e”....,) %-ll( 1) x"ell"‘lr"'l;-

(if p=1, d(e;)==x;) where 7, indicates that 7, is omitted.

—23
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It is straightforward to check that dd=0. This complex is said to be Koszul
complex, and it is denoted by

K.(x;, %), K.x,1--m or K.(x)
and for an A-module M we put
K. (8, M)=MQ.K. (2).

Let x;,--, %, be in A and let Ae; be a free A-module of rank one with specified
basis ¢; for /=1, ---,n. Then

K. (x): 0—> Ae,~ 2 A—sp

is the complex with

0 (70, 1)
K,(x;): Ae;éA (le)
A (p=0)

and d(e;)=x;. Hence we have

H(K.(x))=A/xA and H (K. (x,))=Ann(x,).

Moreover, if we put

K. (2, 2) =K. (4 )QK. ()& QK. (%)

then

Aegl. e .-,=Ae,-,®-"®Ae;#
and
€igenn (p:eh@“'@e;’

for 1<, < - <ip<ni.,
There is another interpretation of the Koszul complex,
Let F=AX,®---@AX, be a free A-module of rank » with a basis {X,, -, X,}.

Then the exterior product A? F is a free mddule of rank (’;}) with a basis {X; A
NAX i 11<d, <+ <dp<<n}, s0 that there is an isomorphism of A-modules
/\,F—_’Kb(g)s
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which maps X; A-AX,, to e...,,. Thus we can define
d: pPF—a NPIR

such that
»
d(X.';/\'”/\X;,): Z:‘:(*“ 1)Y'IXI';/\"'/\}?:‘,/\"‘/\X;,-

If we adopt this definition, then we have to check dd=0([3],1[9],[131).
For any xe=A and any complex C., C.®, K.(x)=C.(x) is the complex such that

(C. (x))r=Cr@sADCs .1 &4 Ae=CoBCs .y
and thus we have an exact sequence of complexes:

0~ C. —=C. (x)

Y R E—

where (’,,,=C, for all >0,
For the boundary operator d of C., the boundary operator 4’ of C. (%) is defined by

a'(&, ) =(d&+(—1)*"1 xn, dy)
for each (&, 7)e=C0Cs.,. Therefore, the following hold.

d'(&,7)=0==Ddn=0 and d&=(~1)*xy
==x(&, 1) =(x§, ¥7)
=d'(0, (- D*EYEd’ ((C. (2} p11)

Thus
xH,(C. (x))=0 for all p=0,1,2, .

Moreover, for each 7&=C y=C;.y with dy=0 in (C.(x)),=C,ECs-,

we have
d’(0,7)=((-1D*'xy, 0).

Hence, from the exact sequence of complexes and by the above statemeénts we have a

long exact homology sequence,

(*); - Hy(C.)—— H(C. (x))—— H,_(C.) .(_:LQ::.{:"'.‘._,]»I’%(C.)
—-”Hp-l(c. (x))-u-—-—-y ......

05—
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and
.\'I‘{;(C. (x))':() for all P=0,1,2,

Proposition 2.5. Let A be a commutative ring with 1, M an A-module and x,, -

X, be a sequence of elements of A.

(1) If (-Z)"”(xh"uxn)’ then
(%’)Hp(fnw):O for al] P:O, 1y 25 veeerr .

(ii) If x,,-,x, is an AM-sequence, then

H, (2, M)=0 for p>1, Ho(z, .ll):;l[/ﬁ:lxi;kl

where Ho(x, M)=H,(K.(x, M)).
Proof. (i) Suppose (&')=(x1, s Xu-y) and K. (%, ) %01 )M =K. (¥, M). Then

K. (&, MDRuK. (x;) =K. (5, M).
In this case, by(*)

X Ho(K. (%, MK (x0) =50+ Hp(%, M)=0

for all P=0,1,2, ...... .

Similarly, for 1</<{m we have
x, » Hp(x,M)=0 for all p=0,1,2, .
Therefore, we have
(2)H (%, M)=0 for all p=0,1,2, .

(ii) We shall prove the result by induction on a.
First,

H(x, M) ={§&M [x§=0} =0

since x is an A -regular element, and thus the result is true when a=1.

Next, we assume that (ii) is true for all 1,2,-,n—1. Then by(*), we have the
exact sequence

021{»(7‘11 AR TYST) M)“’Hf(xl! vy Xmy M)' """Hﬁ-l(xh oty Eneys M):"".O
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for p>1. Therefore
Hp(x, M) =0 for p>1.

We put M,=M/(x,,**,%)M. Then

Hy(%y, ) %y 1y M) =0— Hy (£, M)~ Ho(2y, s Zneyy M) =My 500 mn

is exact when p=1. Since x, is an M, ,-regular element, H,(z, M) must be zero.///

Let (A4, m) be a Noetherian local ring with the minimal basis {x,,---,x.} of m. Put
Ey=K.(%y,%,). Then, by (i) of Proposition 2.5.,

m«H,(Ey)=0 for all p=0,1,2, .
Thus, each H,(E,) is a k-vector space where k=A/m. If we put
€,(A)=dimH,(Es)

then {&;(p=0,1,2,} is a set of invariants of A. If A is regular, then it is clear
that &,(A)=0 for p>>1 and &,(A)=1.
Let (R,n) be a regular local ring, and let A=R/® for an ideal ot of R. Let
5_-‘—“ {&1, s .}
be a minimal basis of n, The Koszul complex for ® and £ is denoted by

K.(§): 0= Ly——s+roeimms Ly Ly=—— )
Put k=R/n. Then

is a projective resolution over % as an R-module. Next
Eu=K.(§)®2A4:0~— L QpA—> -+ LR A~ L@ rA——0
is a semi-complex. Therefore we have
Hy(Ea)=H(K.(§)@rA)=Tor,*(k, A)
for all p>0.

Proposition 2.6. In the above situation, if x(0) is the least number of generators
of ®, then u(0) =dim,H(Es) =€,(A4).

— 27—
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Proof. Consider the following exact sequence:
0> Ol R—— A—— 0.

Then we have the long exact sequence of homology groups

0=Tor*(k, R)— TorR(k, A)— kEa0l— k@nRik®RA~-——’ 0

Since k®gREk§k®gA,

Tor Rk, A)=k@0=0/nq and Tor,*(k, A)=H,(Es)

Hence
2(0) =dim,(H (Ey))=8(A). ///

Let A be a commutative ring with 1 and o an ideal of A. Then we have natural
homomorphisms

v A/ E—a A/ 02— A/,

which make {A/00"|[#»>>0} into an inverse system of rings. The inverse limit (or
projective limit) ring li_rﬂ_A/ﬂl" is denoted by A and is called the completion of A with
respect to W or the ®-adic completion of A with ol-adic topology (or linear topology).
‘So by the universal property we obtain a homomorphism A—s A. Similarly, if M is

any A-module, we define M ::*l_i_@q M/ M, and called it the M-adic completion of M.

If A=A, then A is said to be complete. Thus we know the following properties.

Proposition 2.7. Let A be a commutative ring with 1, 0 an ideal of 4 and let
A be the gi-adic completion of A. Then
(i) @=lim o/0" is an ideal of A. For any =,
(@)"=a"d, and A/(0)"=(4/0")";
(ii) If M is an A-module, M the o-adic completion of M, then )7 :M®4A;

(iii) If A is a Noetherian and M is a finitely generated A-module, then M is
A-flat.

Proof. See ({11,[15]).

Proposition 2.8. Let (A,m) be a Noetherian local ring and A its completion. Then

— 28 —
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(1) e,(A)=¢,(A) for all p>0;
(ii) €,(A)>em.dim(A4)-dim(A) if A is homomorphic image of a regular local ring.
Proof. (i) Since the minimal basis of m is also the minimal basis of mA, if the

Koszul complex for A is £,, then we have the Koszul complex E .4 for A. Thus
H(Es)DsA=H(EyD,A)

since A is A-flat, and from m - Hu(EW)=0, &,(A)=¢,(A4).
(ii) By (i), we may assume that A is complete. Since A is homomorphic image
of a regular local ring, say (R,n), such that A=RX/o.

dim(R)=em.dim(A) ([23],[87,[14]).
Then

£,(A) = p(00) >ht(0) =dim(R) —dim(A4)
=em.dim(A)—dim(A). ///

Definition 2.9. Let (A4, m) be a Noetherian local ring. If
€:(4)=em.dim(A)~dim(A)

then A is called a complete intersection (briefly C.1. ).

Let A be a commutative ring with 1 and let x,,--, %, be an M-regular sequence
in an ideal ot of A. If =x,,--,x, is a maximal M-regular sequence in M, then the
length of a maximal M-regular sequence in: 0L is said to be the o-depth of M and it
is denoted by depthm (M) or by depth(ot, M).

When (A, m) is a local ring, depthm(M) is written as depth(M) or depth,(M)
and call it simply the deptk of M.

Definition 2.10. Let (A4, m) be a Noetherian local ring and M a finitely generated
A-module. We say that M is Cohen-Macaulay(briefly C. M.) if M =0 or if depth(M)
=dim(M) (in general depth(M)<dim(M)). If the local ring A is C.M. as an A4-

module, then we call A a Cohen-Macaulay ring.

Let (A,m) be a C.M. local ring. Then the following are equivalent for every
sequence a,,---, 2, in m(£9],[137):
(i) the sequence a,,---,a, is A-regular,
(ii) bt (a5, -, a) =i (1<i<r),
(iii) ht (ay, -, a,) =7,

DG e
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(iv) there exist a,,,, -, @, (#=dim(A)) in m such that {e,,--,a,} is a system of

parameters of A.

3. Gorenstein Rings and Complete Intersections

Let A be a commutative ring with 1 and let ol be an ideal of A, We say that ot is
irreducible, if qu—7{J for some ideals I and J of A then either oi=1I or L=].

Otherwise, 0l is said to be reducible.

Proposition 3.1. Let (A, m) be a Noetherian local ring with dim(A)=»n and k=
A/m. Then the following conditions are equivalent:
(i) inj. dim(A4)<oo;
(i)' inj. dim(A)=n;
(ii) Ext,i(%, A) {==0 (is=n)
=k ({=n);
(iii) there exists 7 >» such that Ext,'(k, A)=0;

(iv) Extai(k, A) {30 (i<n)
=k (i=n);

(iv)' A is a C. M. ring and Ext,"(k, A)=k;
(v) A is a C. M. ring and every ideal of system of parameters of A is irreducible;
(v)'A is a C.M. ring and there exists an ideal of system of parameters of A.
Proof. The proof can be found in ([147).

Definition 3.2. If (A, m) is a Noetherian local ring satisfying one of the conditions
in the above proposition, then (A, m) is called Goremstein. 1f Ais a Nosetherian ring,
and Ap is Gorenstein for all pe=Spec(A4)(<&=> Am is Gorenstein for all maximal ideal m

of A), then A is said to be a Gorenstein ring.

Let A be a Noetherian semi-local ring and let @ be an ideal of definition of A.
For a finitely generated A-module M, d(M) is called the degree of Hilbert polyno-
mial of M with respect to G.. We have the following properties ([1],[131]):

Proposition 3.3. Let A be a Noetherian semi-local ring, m=rad(A4) and M(#£0)
a finitely generated A-module. Then

d(M) =dim(M)
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, and it is the smallest integer » such that there exist elements ¥y, +--, x, of m satisfy-
ing I(M/2x M+ +x.M)<oo.

Proposition 3.4. Let A, M and m be as before. If x&<m, then
d(M)2d(M/sM)2d(M)—1.
Let A be a commutative ring with 1 and M an A-module. We put
Supp(M) = {p==Spec(A) | Mp+0)
,the support of M, and
V(0) = {peSpec(A) | Sp}

, and we say that a prime ideal p of A is anm associated prime of M if one of the
following equivalent conditions holds:
(i) there exists an element x&=M with Ann(x)=p;
(ii) M contains a submodule isomorphic to A/p.
The set of the associated primes of M is denoted by Ass,(M) or by Ass(M).
Lemma 3.5. Let (A, m) be a Noetherian local ring and let M be a finitely generated
A-module.

(i) If x,, -, x, is an M-regular sequence in m and M '=M/xM, then
Mis C.M.<M is C. M.

(ii) If M is C, M., then for every peSpec(A) the Ap-module My is C.M., and
if Myp#0 we have

depthy(M) =depth 4, (Mp).

Proof. (i) By Nakayama's lemma we have M =0 if and only if M’'=(. Suppose
M=0. Then it suffices to prove that dim(M’) =dim(M)—r. By Proposition 3. 3. and
3.4., we have

dim(M) z2dim(M) —r.
On the other hand, suppose f is an M-regular element, We have

Supp(M/fM) =Supp(M®.+ A/fA)=Supp(M){|Supp(A/fA)
=Supp(M)V(f)

3] —
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,and f is not in any minimal element of Supp(M), in other words, V(f) does not
contain any irreducible component of Supp(M). Hence

dim(M/f M) <dim(M).

This proves dim(M")<dim(M) —7.

(ii) We may assume that Mp+#0. Hence p2Ann(M). We know that
dim(Mp)=depth 4p(Mp) >depthp(M).

So we will prove depthp(M)=dim(Mp) by induction on depthp(M).
If depthp(M)=0, then p is contained in some p'cAssg(M), but Ann(M)SpSy’

and the associated primes of A are the minimal prime over ideal of Ann(M).
Hence p=p’, and dim(Mp)=0.

Next, suppose depthp(M)>-0: take an AM-regular element x&p and put M,=M/

xM. Since the localization preserves the exactness, the element x is Mp-regular.
Therefore we have

dim(My)p=dim(Myp/xMp) =dim(AMyp) ~1

and
depthp( M) =depthp (M) —1.

Since M, is C. M. by (i), by induction hypothesis we have
dim(M)p=depthp(M,).

This complete the proof of (ii). ///

Theorem 3.6. Let (A, m) be a Noetherian local ring, and let x -, x, be an A-
regular sequence, and put B=A/x,A+-+x.A. Then

A is Gorenstein if and only if B is Gorenstein.

Proof. By Lemma 3.5. (i), A is C. M. if and only if B i3 C. M.. Suppose that A
is Gorenstein. Then if the A-regular sequence x,, -, ¥, is extended to a maximal A-
regular SEqQUeNCe %y, -+, Xey Xyppps =y X, in M where dim (A)=n, {x, -, 2.} is a system
of parameters of A, that is, (x;, -, %,)=q is an ideal of definition of 4. Hence q is
m-primary and q is irreducible since A is Gorenstein.

Let ¢: A—>B=A/x;A+--+x,A be the natural projection. Then (%, -, %,) =q
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is m-primary and {%,.;, - %,} is a system of parameters of B. Hence it suffices to

prove that q is irreducible. If q=7{1J for some ideals 7 and J of B, then there exist
ideals I and J such that

I=I1A4, J=]JNA

and
a=qA=TNNHNA=IN].

But since q is irreducible, it follows that q=1I or q=/J. Hence q=JI or q=]. There-
fore, q is irreducible.

Conversely, similarly we can prove that if B is Gorenstein then 4 is Gorenstein.///

Theorem 3.7. 1f a Noetherian ring A is a Gorenstein ring, then a polynomial ring
A[CX7] is a Gorenstein ring.

Proof. Let P be a prime ideal of A[X] and let p=P(}4. Then A[Xp=(Ap[XDp.
Hence we may assume that (A, m)=(Ayp, p4p) is Gorenstein and dim(A)=0 by Theo-

rem 3.6., We put P[1A=m and A[X]p=B. Then it suffices to prove that B is
Gorenstein.

Let PB be the unique maximal ideal of a local ring B such that PB{JA[X]=P
and PB(NA=m, Hence m-A[X]CP.
Therefore we have two cases:
Case I. P=m-A[X].
We know that m is nilpotent, that is, m"=0 for some r>»1 since (A4,m) is a local
ring and dim(A4)=0. Hence dim(A[XImacx:) =0 since ht(P)=0.
Case JI. P=mA[X]+f(X)ALX] for f(X)YgEm-A[X], F(X)=A[X].
Thus A[X1/mA[X1=k[X] is a principal ideal domain where k=A/m.
Then fF(X)Ye=k[X] is irreducible.
Hence we bave dim(B)=dim(A[X1s)=1, since ht(P)=1, f(X) is B-regular since
F(X) is a non-zero divisor of B. Thus f(X) is a system of parameter element of B.
We put C=B/(f), thenC isa free A-module with a finite rank. In fact, if f(X)
=X"+a, X" '+ -+a, then C is generated by {1, X,:, X"!} over A. Hence C=AD
AXPD-PAX"1=A" and mC is a maximal ideal of C. Therefore

Hom(C/mC, C)z=Hom, (4, A)&.C
=A/m@.C
=C/mC

33—
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Thus if Ext,(k, A)=0 for some /, then Ext./(C/mC,C)=0 and if Ext,'(k, A)z=k for
some #, then Ext.'(C/mC,(C)=C/mC. Hence if A is Gorenstein then C is Gorenstein,

and thus if C is Gorenstein then B is Gorenstein by Theorem 3.6. ///

Proposition 3.8. Let A be a Noetherian local ring. Then the following hold:

(i) A is a complete intersection iff A is a complete intersection,

(ii) Let A be a complete intersection and let R be a regular local ring such that
A=R/0L for some ideal 0l of R, Then Ol is generated by an R-regular sequence.

Conversely, if 0L is such an ideal of R then R/0lL is a complete intersection,

(iii) If A is complete intersection, then A is Gorenstein.

Proof. The proof can be found in [147.
Hence we know the following hierarchy of Noetherian local ring;

C.I. ==>Gorenstein—=>C, M,

Example 3.9. A=k[[X,Y,Z])/(X*-Y?, Y?-2% XY, YZ, XZ) is Gorenstein, but
A is not C.I., where k& is a field.

Proof. Let /=(X?*-Y?% Y*-2% XY,YZ, XZ) be an ideal of #[[X,Y,Z]]. We put
A=k[x,y,2] where x,y and 2z are the image of X,Y and Z under the canonical
homomorphism 7: k[[X,Y,Z]]— A. Then x=+y, y=-=2 and xy=yz=2x2=(0 in A.

If M=(X,Y,Z) is a maximal ideal of k([ X, Y,Z7], then M3 since X3=(X*~Y?)
X+(XY)Y is in I. Similarly Y3, Z* are in J. Hence [ is an M-primary and ht(J)
=3. Thus dim(A)=0 and A is generated by {1, x, »,2, ¥’} over k.

The formal power series ring 2[[ X, ¥, Z]] over k iz C, M. ([13)) and I is M-primary,
that is, J is an ideal of definition of #[[ X, Y,Z7), generated by a system of parameters
of a regular sequence X*—Y?, Y2—z% XV, YZ, XZ. Hence k([X, Y,Z]]is Gorenstein,
and so A is Gorenstein by Theorem 3.6.. But ht(I)=3 and

YT ==AiMu T/ MI) K Gevrrrevrevemsiineiaismnniiininisanssnieesns M

On the other hand, if ¢: I/MI-— M%*/ M3 then the basis of M?*/M?*® is {X?, Y?
2% XY, YZ, XZ} and the basis of Im ¢ is {X?—Y? Y2-2% XY, YZ, XZ}. Hence

w1 =dimu(T/MI) 250 eeersnesieimnisiiniiie st @

Therefore, we have #(J)=5 by (1) and (2). Thus ht(J)2u(l). Hence AisnotC.I..///

— 34—
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4. Main Theorems

Let A be a commutative ring and let M be an A-module. If a sequence of
A-modules

At A M—0

is exact, then M is called of finite presemtation. Hence if M is of finite presentation.

we have an exact sequence
where K is finitely generated if N is finitely generated.

Lemma 4.1. Let A be a commutative ring with 1 and let M be a finitely generated
A-module. If M is of finite presentation, then

Up={pe=Spec(A) | Mp is free Ap-module}

is open in Spec(A4).

Proof. If {w,,--,w,} is a basis of Mp for pe=Spec(A), then w,=m,/s; for some
me&EM and s,&S=A/p, and A"—— M is surjective. Thus there exists an open set
D(f) at p such that D(f)=‘_(':tlD(s¢) for some fe&=A since {D(a)|ae=A} is an open
basis of Spec(A).

We may assume that A=A, and M=M®A;zM,. Then for every aqe=D(f)
{wy, -+, w,} generates M,. Hence for every qe=Spec(A4)=Spec(4,), My=ZlAqw; since
D(f)=Spec(4).

If ¢: A™— M is defined by ¢(ay, -, a.) =3 a,w; then ¢ is surjective. Hence if
ker ¢=K, then we have

0—+ K—— A" — M—0
is exact, and K =0 for all g&=D(f) and (Ag)"=M,. Hence D(f)CU,;. Therefore Uy
is open in Spec(A4). ///

Lemma 4.2. Let A be a Noetherian local ring and let ot be a proper ideal of A.
If proj.dim(0t) <oo, then the following holds.

o is generated by A-sequence>@/0® is free A/M-module([14],{18]).
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Theorem 4.3. Let R be a regular ring and 0L be an ideal of R, If A=R/0, then
{p=Spec(A)|Ap is C. .}

is open in Spec(A).

Proof. Let p be a prime ideal of A. Then P/0t=p for some prime ideal P of K.
By Proposition 3.8. (ii), Ap is complete intersection if and only if 0l is generated by
an Rp-regular sequence,

Since Ap=Rp/0lp=(R/®)p is a local ring, R, is a regular local ring and R, is
Gorenstein if and only if Ap is Gorenstein, and so proj. dim(@)< eo. Hence by Lemma

4.2., 0p/Mp? is a free Ap-module. Therefore by Lemma 4.1.,
{pe=Spec(A4)|Ap is C. L.}
is open in Spec(A). ///

Proposition 4.4. A regular local ring (A, m) is a Unique Factorization Domain
(UFD) ({111,131, (141, (15D).

Proposition 4.5. A Noetherian domain A is a UFD iff every prime ideal of 4 with
height 1 is principal.

Proof. Suppose that A is a UFD and that p is a prime ideal of A with ht(p)=1.
Then for any non-zero element acsp, if a::.ﬁl r; where 7, is prime element, then there

exists 7; such that z,csp since p is a prime ideal. Hence (7;)&p, and (z,) is a non-
zero prime ideal with height |. Therefore p=(x,).

Conversely, assume that every prime ideal of A with height 1 is principal. Since
A is Noetherian, every element of A which neither 0 nor unit is a finite product of
irreducible elements of A. Let x be an irreducible element of A. If p is a minimal
prime over ideal of (x), then ht(p)=1. Hence p=(y) for some y=A from the hypoth-
esis, and (¥)Cp=(y). Thus if x=yc for some c=A, then ¢ is unit since x is irre-
ducible. Hence (x)=(»)=p. ///

Proposition 4.8. If (4,m) is a complete local ring, then A is a homomorphic

image of a regular local ring ([14]).

Lemma 4.7. Let (A, m) be a Noetherian local ring. If A is a Cohen-Macaulay
ring and em.dim(A)=dim(A)+1, then A is a complete intersection,

Proof. Let A be the completion of A with respect to m.
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By Proposition 3.8. (i), A is a complete intersection iff A is a complete intersection.
Hence we may assume that . is a complete Noetherian local ring. Thus by Proposition
4.6., there exists a regular local ring R such that A=R/0. where 0l is an ideal of R.

Hence
dim(R) =em. dim(A) =dim(A4) -+ 1.

Since dim(R)=dim(A)-+ht(o), ht(o)=1.
Since R is a UFD by Proposition 4.4. and ht(®)=1, O is a principal ideal by

Proposition 4.5.. Thus A is a complete intersection. ///

Theorem 4.8. Let (A, m) be a principal Noetherian local ring which is not a field
(that is, m=2:(0)). If Spec(A) is discrete, then (A4, m) is a complete intersection.

Proof. By Lemma 2.1., (A,m) is a Artinian local ring. Hence (A4, m) is a Cohen
-Macaulay ring since 0<{depth(A)<dim(A)=0.

Therefore dimym/m?=1 by Lemma 2.2., and we have
1=em.dim(A) =dimym/mé=dim(A4) +1.

Hence (A,m) is a complete intersection by Lemma 4.7.. ///
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