• 제목/요약/키워드: Glycan

검색결과 65건 처리시간 0.017초

Development of a Matrix-prespotted Plate for Enhancing the Reproducibility of Serum Glycan Analysis by MALDI-TOF-MS

  • Ha, Mi-Young;In, Young-Ha;Maeng, Hye-Sun;Zee, Ok-Pyo;Lee, Jong-Sik;Kim, Yang-Sun
    • Mass Spectrometry Letters
    • /
    • 제2권3호
    • /
    • pp.61-64
    • /
    • 2011
  • Matrix Assisted Laser Desorption/Ionization-Time-of-Flight mass spectrometry (MALDI-TOF-MS) is the most widely used MS technique for glycan analysis. However, the poor point-to-point and sample-to-sample reproducibility becomes a limit in glycan biomarker research. A prespotted MALDI plate which overcomes the large crystal formation of 2,5-dihydroxybenzoic acid (DHB) has been developed and applied for glycan analysis. A homogeneous matrix coated surface without a crystal structure was formed on a hydrophilic/ hydrophobic patterned surface using a piezoelectric device. The reproducible MALDI-TOF-MS data have been presented using MALDI imaging of beer glycan as well as serum glycan eluted from 10% and 20% ACN elution fractions. The glycan profile from the serum glycan by MALDI-TOF-MS with a DHB prespotted plate was highly conserved for 10 different spectra and the coefficient of variations of significant ion peaks of MALDI data varies from 3.59 to 19.95.

Differentiation of Glycan Diversity with Serial Affinity Column Set (SACS)

  • Shin, Jihoon;Cho, Wonryeon
    • Mass Spectrometry Letters
    • /
    • 제7권3호
    • /
    • pp.74-78
    • /
    • 2016
  • Targeted glycoproteomics is an effective way to discover disease-associated glycoproteins in proteomics and serial affinity chromatography (SAC) using lectin and glycan-targeting antibodies shows glycan diversity on the captured glycoproteins. This study suggests a way to determine glycan heterogeneity and structural analysis on the post-translationally modified proteins through serial affinity column set (SACS) using four Lycopersicon esculentum lectin (LEL) columns. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Through this study, some proteins were identified to have glycoforms with different affinity on a single glycoprotein. It will be particularly useful in determining biomarkers in which the disease-specific feature is a unique glycan, or a group of glycans.

Characterization of the $\alpha$-mannosidase Gene Family in Filamentous Fungi: N-glycan Remodelling for the Development of Eukaryotic Expression Systems

  • Eades, C.Joshua;Hintz, William E.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권4호
    • /
    • pp.227-233
    • /
    • 2000
  • Although filamentous fungi are used extensively for protein expression, their use for the production of heterologous glycoproteins is constrained by the types of N-glycan structures produced by filamentous fungi as compared to those naturally found on the glycoproteins. Attempts are underway to engineer the N-glycan synthetic pathways in filamentous fungi in order to produce fungal expression strains which can produce heterologous glycoproteins carrying specific N-glycan structures. To fully realize this goal, a detailed understanding of the genetic components of this pathway in filamentous fungi is required. In this review, we discuss the characterization of the $\alpha$-mannosidase gene family in filamentous fungi and its implications for the elucidation of the N-glycan synthetic pathway.

  • PDF

고삼투압이 재조합 Erythropoietin의 생산과 당쇄구조에 미치는 효과

  • 정연태;김정회
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.221-224
    • /
    • 2001
  • Effect of hyperosmotic pressure on growth of recombinant Chinese hamster 。 vary cells and Erythropoietin (EPO) production was investigated. Cells were cultivated in batch modes at various osmolalities. When the osmolality increased from 314 to 463mOsm/Kg, specific EPO productivity (qp) was increased up to 1.6-fold but cell growth was inhibited. EPO has a complex oligosaccharide structure that plays an important role in biological activity in vivo. To investigate the influence of hypoerosmotic pressure on the glycosylation, structural analysis of oligosaccharide was calTied out. Recombinant human EPO was produced by CHO cells grown under various osmotic pressure and purified from culture supernatants by heparin-sepharose affinity column and immunoaffinity column. N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were labeled with fluorescent dye, 2-aminobenzamide and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of GU (glucose unit) value. Glycan analysis by HPLC showed that neutral (asialo) oligosaccharide was increased slightly with an increase in osmolality. In portion of sialylated glycan, total relative amount of mono- and di-sialyated glycan was increased but that of tri- and tetra-sialylated glycan decreased as osmolality was increased.

  • PDF

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal;Li, Lingyun;Linhardt, Robert J.
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.67-72
    • /
    • 2018
  • Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme

  • Kim, Seong-Hun;Oh, Doo-Byoung;Kwon, Oh-Suk;Jung, Jae-Kap;Lee, Yun-Mi;Ko, Ki-Sung;Ko, Jeong-Heon;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.859-865
    • /
    • 2008
  • Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.

MALDI-MS 기반 당단백질 당쇄의 정량분석 기술 개발 연구 동향 (Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis)

  • 김경진;김윤우;황철환;박한규;정재현;김윤곤
    • KSBB Journal
    • /
    • 제30권5호
    • /
    • pp.230-238
    • /
    • 2015
  • Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.

나노 액체크로마토그래피-텐덤 질량분석기를 이용하여 N-당질화 위치 및 N-당사슬 구조 규명을 위한 방법 (A Sensitive Method for Identification of N-Glycosylation Sites and the Structures of N-Glycans Using Nano-LC-MS/MS)

  • 조영은;김숙경;백문창
    • 약학회지
    • /
    • 제57권4호
    • /
    • pp.250-257
    • /
    • 2013
  • Biosimilars are important drugs in medicine and contain many glycosylated proteins. Thorough analysis of the glycosylated protein is a prerequisite for evaluation of biosimilar glycan drugs. A method to assess the diversity of N-glycosylation sites and N-glycans from biosimilar glycan drugs has been developed using two separate methods, LC-MS/MS and MALDI-TOF MS, respectively. Development of sensitive, accurate, and efficient methods for evaluation of glycoproteins is still needed. In this study, analysis of both N-glycosylation sites and N-glycans of glycoprotein was performed using the same LC-MS/MS with two different nano-LC columns, nano-C18 and nano-porous graphitized carbon (nano-PGC) columns. N-glycosylated proteins, including RNAse B (one N-glycosylation site), Fetuin (three sites), and ${\alpha}$-1 acid glycoprotein (four sites), were used, and small amounts of each protein were used for identification of N-glycosylation sites. In addition, high mannose N-glycans (one type of typical glycan structure), Mannose 5 and 9, eluted from RNAse B, were successfully identified using nano-PGC-LC MS/MS analysis, and the abundance of each glycan from the glycoprotein was calculated. This study demonstrated an accurate and efficient method for determination of N-glycosylation sites and N-glycans of glycoproteins based on high sensitive LC-MS/MS using two different nano-columns; this method could be applied for evaluation of the quality of various biosimilar drugs containing N-glycosylation groups.

신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할 (Biological Roles of the Glycan in the Investigation of the Novel Disease Diagnosis and Treatment Methods)

  • 김동찬
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1379-1385
    • /
    • 2018
  • 당사슬은 당단백질과 단백당에 결합하며, 일반적으로 세포의 최외각 표면에서 발견된다. O-연결 당사슬과 N-연결 당사슬은 진핵세포에 흔히 존재하는 당사슬이며 원핵세포에서도 발견된다. 세포 표면에 존재하는 당사슬과 주변에 동일한 종류의 세포막에 노출된 당사슬 결합 단백질과의 상호작용, 전혀 다른 종류의 세포와의 상호작용, 또는 질병 유발 균주와 바이러스와의 상호작용은 생물학 및 의생명과학에 있어서 질병원인물질 인식, 세포 이동, 세포간의 결합, 발생, 그리고 감염 등과 같은 과정에 있어서 매우 중요한 역할을 담당한다. 각종 질병 상황에서의 당사슬의 프로파일의 변화와 역할은 당사슬이 질병 진단 마커로 활용할 가능성을 제시한다. 이에 더하여, 기존의 많은 선행 연구들에서, 재조합 단백질 의약품에 결합된 당사슬은 재조합 단백질 의약품의 용해도, 약동역학, 약물 활성, 생체활성, 안전성을 적절하게 유지하고 결정짓는데 중요한 요소가 된다. 게다가, 암의 발생과 진전의 영향으로 인해 당사슬 가지 끝에 결합하는 시알릭산의 당질화 양상의 변화는 세포와 세포간 상호작용, 인식 그리고 면역 반응에 매우 중요한 요소로 작용한다. 본 총설에서는 당사슬의 생물학적인 기능에 대한 전반적인 이해를 돕고, 당질화 현상과 질병 진단 및 질병 치료 기법간의 상호 연관성을 간략히 설명하고자 한다. 추가적으로 혈액 내 혈청에 존재하는 당사슬의 프로파일의 변화를 분석하는 대량효능검색 방법과 이로 인해 유도되는 생화학적 작용 기작을 살펴보았다.

Multi-Level Characterization of Protein Glycosylation

  • Hua, Serenus;Oh, Myung Jin;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.10-17
    • /
    • 2013
  • Recent developments in MS-based glycomics and glycoproteomics have rapidly advanced the field and pushed the boundaries of glyco-analysis into new territories. This review will lay out current workflows and strategies for characterization of the glycoproteome, including (in order of increasing complexity and information content) preliminary site mapping, compositional glycan profiling, isomer-specific glycan profiling, glycosite-specific glycopeptide profiling, and finally, glycoproteomic profiling.