Browse > Article

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme  

Kim, Seong-Hun (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Oh, Doo-Byoung (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kwon, Oh-Suk (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Jung, Jae-Kap (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Yun-Mi (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ko, Ki-Sung (Division of Biological Science, College of Natural Science, Wonkwang University)
Ko, Jeong-Heon (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kang, Hyun-Ah (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 859-865 More about this Journal
Abstract
Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.
Keywords
Glycosyltransferase; nucleotide-sugar; Fusobacterium nucleatum; human-type N-linked glycan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Bachrach, G., S. K. Haake, A. Glick, R. Hazan, R. Naor, R. N. Andersen, and P. E. Kolenbrander. 2004. Characterization of the novel Fusobacterium nucleatum plasmid pKH9 and evidence of an addiction system. Appl. Environ. Microbiol. 70: 6957-6962   DOI   ScienceOn
2 Blixt, O., I. van Die, T. Norberg, and D. H. van den Eijnden. 1999. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAcb1-3Gal and GalNAcb1-3Gal linkages. Glycobiology 9: 1061-1071   DOI   ScienceOn
3 Bonofiglio, L., E. Garcia, and M. Mollerach. 2005. Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr. Microbiol. 51: 217-221   DOI   ScienceOn
4 Garinot-Schneider, C., A. C. Lellouch, and R. A. Geremia. 2000. Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM. J. Biol. Chem. 275: 31407-31413   DOI   ScienceOn
5 Kim, J. H., B. G. Kim, J. A. Kim, Y. Park, Y. J. Lee, Y. Lim, and J.-H. Ahn. 2007. Glycosylation of flavonoids with E. coli expressing glycosyltransferase from Xanthomonas campestris. J. Microbiol. Biotechnol. 17: 539-542   과학기술학회마을
6 Qasba, P. K., B. Ramakrishnan, and E. Boeggeman. 2005. Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 30: 53-62   DOI
7 Charnock, S. J. and G. J. Davies. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38: 6380-6385   DOI   ScienceOn
8 Bateman, A., E. Birney, R. Durbin, S. R. Eddy, K. L. Howe, and E. L. Sonnhammer. 2000. The Pfam protein families database. Nucleic Acids Res. 28: 263-266   DOI   ScienceOn
9 Oberthur, M., C. Leimkuhler, R. G. Kruger, W. Lu, C. T. Walsh, and D. Kahne. 2005. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferase. J. Am. Chem. Soc. 127: 10747-10752   DOI   ScienceOn
10 Melaugh, W., N. J. Phillips, A. A. Campagnari, R. Karalus, and B. W. Gibson. 1992. Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease. J. Biol. Chem. 267: 13434-13439
11 Cox, A. D., D. W. Hood, A. Martin, K. M. Makepeace, M. E. Deadman, J. Li, J. R. Brisson, E. R. Moxon, and J. C. Richards. 2002. Identification and structural characterization of a sialylated lacto-N-neotetraose structure in the lipopolysaccharide of Haemophilus influenzae. Eur. J. Biochem. 269: 4009-4019   DOI   ScienceOn
12 Moran, A. P., M. M. Prendergast, and B. J. Appelmelk. 1996. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16: 105-115   DOI   ScienceOn
13 Coutinho, P. M., E. Deleury, G. J. Davies, and B. Henrissat. 2003. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328: 307-317   DOI   ScienceOn
14 Jewett, A., W. R. Hume, H. Le, T. N. Huynh, Y. W. Han, G.. Cheng, and W. Shi. 2000. Induction of apoptotic cell death in peripheral blood mononuclear and polymorphonuclear cells by an oral bacterium, Fusobacterium nucleatum. Infect. Immun. 68: 1893-1898   DOI   ScienceOn
15 St. Michael, F., C. M. Szymanski, J. Li, K. H. Chan, N. H. Khieu, S. Larocque, W. W. Wakarchuk, J. R. Brisson, and M. A. Monteiro. 2002. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269: 5119-5136   DOI   ScienceOn
16 Kanipes, M. I., E. Papp-Szabo, P. Guerry, and M. A. Monteiro. 2006. Mutation of waaC, encoding heptosyltransferase I in Campylobacter jejuni 81-176, affects the structure of both lipooligosaccharide and capsular carbohydrate. J. Bacteriol. 188: 3273-3279   DOI   ScienceOn
17 Kapatral, V., I. Anderson, N. Ivanova, G.. Reznik, T. Los, A. Lykidis, A. Bhattacharyya, A. Bartman, W. Gardner, G. Grechkin, L. Zhu, O. Vasieva, L. Chu, Y. Kogan, O. Chaga, E. Goltsman, A. Bernal, N. Larsen, M. D'Souza, T. Walunas, G. Pusch, R. Haselkorn, M. Fonstein, N. Kyrpides, and R. Overbeek. 2002. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J. Bacteriol. 184: 2005-2018   DOI   ScienceOn
18 Piekarowicz, A. and D. C. Stein. 2002. Biochemical properties of Neisseria gonorrhoeae LgtE. J. Bacteriol. 184: 6410-6416   DOI   ScienceOn
19 Wang, Y., S. S. Wong, M. N. Fukuda, H. Zu, Z. Liu, Q. Tang, and H. E. Appert. 1994. Identification of functional cysteine residues in human galactosyltransferase. Biochem. Biophys. Res. Commun. 204: 701-709   DOI   ScienceOn
20 Palcic, M. M. and K. Sujino. 2001. Assays for glycosyltransferases. Trends Glycosci. Glycotechnol. 13: 361-370   DOI   ScienceOn
21 Rosen, G. and M. N. Sela. 2006. Coaggregation of Porphyromonas gingivalis and Fusobacterium nucleatum PK 1594 is mediated by capsular polysaccharide and lipopolysaccharide. FEMS Microbiol. Lett. 256: 304-310   DOI   ScienceOn
22 Johnson, K. F. 1999. Synthesis of oligosaccharides by bacterial enzymes. Glycoconj. J. 16: 141-146   DOI   ScienceOn
23 Endo, T., S. Koizumi, K. Tabata, and A. Ozaki. 2000. Cloning and expression of $\beta$1,4-galactosyltransferase gene from Helicobacter pylori. Glycobiology 10: 809-813   DOI   ScienceOn
24 Saksouk N., L. Pelosi, P. Colin-Morel, M. Boumedienne, P. L. Abdian, and R. A. Geremia. 2005. The capsular polysaccharide biosynthesis of Streptococcus pneumoniae serotype 8: Functional identification of the glycosyltransferase WciS (Cap8H). Biochem. J. 389: 63-72   DOI   ScienceOn
25 Garcia, M. M., S. A. Becker, B. W. Brooks, J. N. Berg, and S. M. Finegold. 1992. Ultrastructure and molecular characterization of Fusobacterium necrophorum biovars. Can. J. Vet. Res. 56: 318-325
26 Okuda, K., T. Kato, K. Ishihara, and Y. Naito. 1991. Adherence to experimental pellicle of rough-type lipopolysaccharides from subgingival plaque bacteria. Oral Microbiol. Immunol. 6: 241-245   DOI   ScienceOn
27 Park, J. E., K. Y. Lee, S. I. Do, and S. S. Lee. 2002. Expression and characterization of $\beta$-1,4-galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae. J. Biochem. Mol. Biol. 35: 330-336   DOI
28 Lee, H. J., B. G.. Kim, and J.-H. Ahn. 2006. Molecular cloning and characterization of Bacillus cereus O-methyltransferase. J. Microbiol. Biotechnol. 16: 619-622   과학기술학회마을
29 Watanabe, M., K. Miyake, K. Yanae, Y. Kataoka, S. Koizumi, T. Endo, A. Ozaki, and S. Iijima. 2002. Molecular characterization of a novel $\beta$1,3-galactosyltransferase for capsular polysaccharide synthesis by Streptococcus agalactiae type Ib. J. Biochem. (Tokyo) 131: 183-191   DOI   ScienceOn
30 Phillips, N. J., T. J. Miller, J. J. Engstrom, W. Melaugh, R. McLaughlin, M. A. Apicella, and B. W. Gibson. 2000. Characterization of chimeric lipopolysaccharides from Escherichia coli strain JM109 transformed with lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. J. Biol. Chem. 275: 4747-4758   DOI   ScienceOn
31 Shao, J., J. Zhang, P. Kowal, Y. Lu, and P. G. Wang. 2002. Overexpression and biochemical characterization of $\beta$-1,3-Nacetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd. Biochem. Biophys. Res. Commun. 295: 1-8   DOI   ScienceOn