Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.5.230

Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis  

Kim, Kyoung-Jin (Department of Chemical Engineering, Soongsil University)
Kim, Yoon-Woo (Department of Chemical Engineering, Soongsil University)
Hwang, Cheol-Hwan (Department of Chemical Engineering, Soongsil University)
Park, Han-Kyu (Department of Chemical Engineering, Soongsil University)
Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
Publication Information
KSBB Journal / v.30, no.5, 2015 , pp. 230-238 More about this Journal
Abstract
Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.
Keywords
MALDI-MS; Recombinant glycoprotein drug; Glycan; Quantitative analysis; Chemical derivatization; High-throughput analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarez-Manilla, G., N. L. Warren, T. Abney, J. Atwood, 3rd, P. Azadi, W. S. York, M. Pierce, and R. Orlando (2007) Tools for glycomics: Relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17: 677-687.   DOI
2 Blom, N., T. Sicheritz-Ponten, R. Gupta, S. Gammeltoft, and S. Brunak (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.   DOI
3 Chirino, A. J., M. L. Ary, and S. A. Marshall (2004) Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9: 82-90.   DOI
4 Ciucanu, I. and C. E. Costello (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J. Am. Chem. Soc. 125: 16213-16219.   DOI
5 Edelman, G. M. (1983) Cell adhesion molecules. Science 219: 450-457.   DOI
6 Endo, S., M. Morita, M. Ueno, T. Maeda, and T. Terabayashi (2009) Fluorescent labeling of a carboxyl group of sialic acid for MALDI-MS analysis of sialyloligosaccharides and ganglioside. Biochem. Biophys. Res. Commun. 378: 890-894.   DOI
7 Ghaderi, D., M. Zhang, N. Hurtado-Ziola, and A. Varki (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28: 147-175.   DOI
8 Gil, G. C., B. Iliff, R. Cerny, W. H. Velander, and K. E. Van Cott (2010) High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 82: 6613-6620.   DOI
9 Gil, G. C., Y. G. Kim, and B. G. Kim (2008) A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 379: 45-59.   DOI
10 Hakomori, S. (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55: 205-208.
11 Jang, K. S., Y. G. Kim, G. C. Gil, S. H. Park, and B. G. Kim (2009) Mass spectrometric quantification of neutral and sialylated N-glycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal. Biochem. 386: 228-236.   DOI
12 Jeong, H. J., Y. G. Kim, Y. H. Yang, and B. G. Kim (2012) High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 84: 3453-3460.   DOI
13 Kam, R. K., T. C. Poon, H. L. Chan, N. Wong, A. Y. Hui, and J. J. Sung (2007) High-throughput quantitative profiling of serum N-glycome by MALDI-TOF mass spectrometry and N-glycomic fingerprint of liver fibrosis. Clin. Chem. 53: 1254-1263.   DOI
14 Kim, K. J., Y. W. Kim, C. H. Hwang, H. G. Park, Y. H. Yang, M. Koo, and Y. G. Kim (2015) A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis. Biotechnol. Lett. 37: 2019-2025.   DOI
15 Kang, P., Y. Mechref, I. Klouckova, and M. V. Novotny (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19: 3421-3428.   DOI
16 Kang, P., Y. Mechref, Z. Kyselova, J. A. Goetz, and M. V. Novotny (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal. Chem. 79: 6064-6073.   DOI
17 Kang, P., Y. Mechref, and M. V. Novotny (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22: 721-734.   DOI
18 Kim, K. J., Y. W. Kim, Y. G. Kim, H. M. Park, J. M. Jin, Y. Hwan Kim, Y. H. Yang, J. Kyu Lee, J. Chung, S. G. Lee, and A. Saghatelian (2015) Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG). Biotechnol. Prog. 31: 840-848.   DOI
19 Kim, Y. G., H. J. Jeong, K. S. Jang, Y. H. Yang, Y. S. Song, J. Chung, and B. G. Kim (2009) Rapid and high-throughput analysis of N-glycans from ovarian cancer serum using a 96-well plate platform. Anal. Biochem. 391: 151-153.   DOI
20 Kuster, B., T. J. Naven, and D. J. Harvey (1996) Rapid approach for sequencing neutral oligosaccharides by exoglycosidase digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 31: 1131-1140.   DOI
21 Liu, X., H. Qiu, R. K. Lee, W. Chen, and J. Li (2010) Methylamidation for sialoglycomics by MALDI-MS: A facile derivatization strategy for both alpha2,3- and alpha2,6-linked sialic acids. Anal. Chem. 82: 8300-8306.   DOI
22 Nishikaze, T., S. Kawabata, and K. Tanaka (2014) In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry. Anal. Chem. 86: 5360-5369.   DOI
23 Lowe, J. B. (2001) Glycosylation, Immunity, and Autoimmunity. Cell 104: 809-812.   DOI
24 Matsumoto, K., C. Shimizu, T. Arao, M. Andoh, N. Katsumata, T. Kohno, K. Yonemori, F. Koizumi, H. Yokote, K. Aogi, K. Tamura, K. Nishio, and Y. Fujiwara (2009) Identification of predictive biomarkers for response to trastuzumab using plasma FUCA activity and N-glycan identified by MALDI-TOF-MS. J. Proteome. Res. 8: 457-462.   DOI
25 Morelle, W., V. Faid, F. Chirat, and J. C. Michalski (2009) Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol. Biol. 534: 5-21.
26 Ohtsubo, K. and J. D. Marth (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855-867.   DOI
27 Okamoto, M., K. Takahashi, T. Doi, and Y. Takimoto (1997) High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 69: 2919-2926.   DOI
28 Pabst, M., J. S. Bondili, J. Stadlmann, L. Mach, and F. Altmann (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79: 5051-5057.   DOI
29 Prien, J. M., B. D. Prater, Q. Qin, and S. L. Cockrill (2010) Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal. Chem. 82: 1498-1508.   DOI
30 Royle, L., M. P. Campbell, C. M. Radcliffe, D. M. White, D. J. Harvey, J. L. Abrahams, Y. G. Kim, G. W. Henry, N. A. Shadick, M. E. Weinblatt, D. M. Lee, P. M. Rudd, and R. A. Dwek (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376: 1-12.   DOI
31 Rudd, P. M., T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek (2001) Glycosylation and the immune system. Science 291: 2370-2376.   DOI
32 Sekiya, S., Y. Wada, and K. Tanaka (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77: 4962-4968.   DOI
33 Swiech, K., V. Picanco-Castro, and D. T. Covas (2012) Human cells: New platform for recombinant therapeutic protein production. Protein Expr. Purif. 84: 147-153.   DOI
34 Tep, S., M. Hincapie, and W. S. Hancock (2012) A general approach for the purification and quantitative glycomic analysis of human plasma. Anal. Bioanal. Chem. 402: 2687-2700.   DOI
35 Toyoda, M., H. Ito, Y. K. Matsuno, H. Narimatsu, and A. Kameyama (2008) Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80: 5211-5218.   DOI
36 Viseux, N., E. de Hoffmann, and B. Domon (1997) Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal. Chem. 69: 3193-3198.   DOI
37 Walsh, G., and R. Jefferis. (2006) Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252.   DOI
38 Weiskopf, A. S., P. Vouros, and D. J. Harvey (1998) Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem. 70: 4441-4447.   DOI
39 Wuhrer, M., C. A. Koeleman, and A. M. Deelder (2009) Two-dimensional HPLC separation with reverse-phase-nano-LC-MS/MS for the characterization of glycan pools after labeling with 2-aminobenzamide. Methods Mol. Biol. 534: 79-91.
40 Wu, S., R. Grimm, J. B. German, and C. B. Lebrilla (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome. Res. 10: 856-868.   DOI
41 Xia, B., C. L. Feasley, G. P. Sachdev, D. F. Smith, and R. D. Cummings (2009) Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387: 162-170.   DOI
42 Xie, Y., K. Tseng, C. B. Lebrilla, and J. L. Hedrick (2001) Targeted use of exoglycosidase digestion for the structural elucidation of neutral O-linked oligosaccharides. J. Am. Soc. Mass Spectrom. 12: 877-884.   DOI
43 York, W. S., L. L. Kiefer, P. Albersheim, and A. G. Darvill (1990) Oxidation of oligoglycosyl alditols during methylation catalyzed by sodium hydroxide and iodomethane in methyl sulfoxide. Carbohydrate Res. 208: 175-182.   DOI
44 Zhou, H., P. G. Warren, J. W. Froehlich, and R. S. Lee (2014) Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal. Chem. 86: 6277-6284.   DOI