DOI QR코드

DOI QR Code

Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis

MALDI-MS 기반 당단백질 당쇄의 정량분석 기술 개발 연구 동향

  • Kim, Kyoung-Jin (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Yoon-Woo (Department of Chemical Engineering, Soongsil University) ;
  • Hwang, Cheol-Hwan (Department of Chemical Engineering, Soongsil University) ;
  • Park, Han-Kyu (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
  • 김경진 (숭실대학교 화학공학과) ;
  • 김윤우 (숭실대학교 화학공학과) ;
  • 황철환 (숭실대학교 화학공학과) ;
  • 박한규 (숭실대학교 화학공학과) ;
  • 정재현 (숭실대학교 화학공학과) ;
  • 김윤곤 (숭실대학교 화학공학과)
  • Received : 2014.08.06
  • Accepted : 2015.10.05
  • Published : 2015.10.27

Abstract

Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.

Keywords

References

  1. Alvarez-Manilla, G., N. L. Warren, T. Abney, J. Atwood, 3rd, P. Azadi, W. S. York, M. Pierce, and R. Orlando (2007) Tools for glycomics: Relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17: 677-687. https://doi.org/10.1093/glycob/cwm033
  2. Blom, N., T. Sicheritz-Ponten, R. Gupta, S. Gammeltoft, and S. Brunak (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649. https://doi.org/10.1002/pmic.200300771
  3. Chirino, A. J., M. L. Ary, and S. A. Marshall (2004) Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9: 82-90. https://doi.org/10.1016/S1359-6446(03)02953-2
  4. Ciucanu, I. and C. E. Costello (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J. Am. Chem. Soc. 125: 16213-16219. https://doi.org/10.1021/ja035660t
  5. Edelman, G. M. (1983) Cell adhesion molecules. Science 219: 450-457. https://doi.org/10.1126/science.6823544
  6. Endo, S., M. Morita, M. Ueno, T. Maeda, and T. Terabayashi (2009) Fluorescent labeling of a carboxyl group of sialic acid for MALDI-MS analysis of sialyloligosaccharides and ganglioside. Biochem. Biophys. Res. Commun. 378: 890-894. https://doi.org/10.1016/j.bbrc.2008.12.011
  7. Ghaderi, D., M. Zhang, N. Hurtado-Ziola, and A. Varki (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28: 147-175. https://doi.org/10.5661/bger-28-147
  8. Gil, G. C., B. Iliff, R. Cerny, W. H. Velander, and K. E. Van Cott (2010) High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 82: 6613-6620. https://doi.org/10.1021/ac1011377
  9. Gil, G. C., Y. G. Kim, and B. G. Kim (2008) A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 379: 45-59. https://doi.org/10.1016/j.ab.2008.04.039
  10. Hakomori, S. (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55: 205-208.
  11. Jang, K. S., Y. G. Kim, G. C. Gil, S. H. Park, and B. G. Kim (2009) Mass spectrometric quantification of neutral and sialylated N-glycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal. Biochem. 386: 228-236. https://doi.org/10.1016/j.ab.2008.12.015
  12. Jeong, H. J., Y. G. Kim, Y. H. Yang, and B. G. Kim (2012) High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 84: 3453-3460. https://doi.org/10.1021/ac203440c
  13. Kam, R. K., T. C. Poon, H. L. Chan, N. Wong, A. Y. Hui, and J. J. Sung (2007) High-throughput quantitative profiling of serum N-glycome by MALDI-TOF mass spectrometry and N-glycomic fingerprint of liver fibrosis. Clin. Chem. 53: 1254-1263. https://doi.org/10.1373/clinchem.2007.085563
  14. Kang, P., Y. Mechref, I. Klouckova, and M. V. Novotny (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19: 3421-3428. https://doi.org/10.1002/rcm.2210
  15. Kang, P., Y. Mechref, Z. Kyselova, J. A. Goetz, and M. V. Novotny (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal. Chem. 79: 6064-6073. https://doi.org/10.1021/ac062098r
  16. Kang, P., Y. Mechref, and M. V. Novotny (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22: 721-734. https://doi.org/10.1002/rcm.3395
  17. Kim, K. J., Y. W. Kim, C. H. Hwang, H. G. Park, Y. H. Yang, M. Koo, and Y. G. Kim (2015) A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis. Biotechnol. Lett. 37: 2019-2025. https://doi.org/10.1007/s10529-015-1881-6
  18. Kim, K. J., Y. W. Kim, Y. G. Kim, H. M. Park, J. M. Jin, Y. Hwan Kim, Y. H. Yang, J. Kyu Lee, J. Chung, S. G. Lee, and A. Saghatelian (2015) Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG). Biotechnol. Prog. 31: 840-848. https://doi.org/10.1002/btpr.2078
  19. Kim, Y. G., H. J. Jeong, K. S. Jang, Y. H. Yang, Y. S. Song, J. Chung, and B. G. Kim (2009) Rapid and high-throughput analysis of N-glycans from ovarian cancer serum using a 96-well plate platform. Anal. Biochem. 391: 151-153. https://doi.org/10.1016/j.ab.2009.05.015
  20. Kuster, B., T. J. Naven, and D. J. Harvey (1996) Rapid approach for sequencing neutral oligosaccharides by exoglycosidase digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 31: 1131-1140. https://doi.org/10.1002/(SICI)1096-9888(199610)31:10<1131::AID-JMS401>3.0.CO;2-R
  21. Liu, X., H. Qiu, R. K. Lee, W. Chen, and J. Li (2010) Methylamidation for sialoglycomics by MALDI-MS: A facile derivatization strategy for both alpha2,3- and alpha2,6-linked sialic acids. Anal. Chem. 82: 8300-8306. https://doi.org/10.1021/ac101831t
  22. Lowe, J. B. (2001) Glycosylation, Immunity, and Autoimmunity. Cell 104: 809-812. https://doi.org/10.1016/S0092-8674(01)00277-X
  23. Matsumoto, K., C. Shimizu, T. Arao, M. Andoh, N. Katsumata, T. Kohno, K. Yonemori, F. Koizumi, H. Yokote, K. Aogi, K. Tamura, K. Nishio, and Y. Fujiwara (2009) Identification of predictive biomarkers for response to trastuzumab using plasma FUCA activity and N-glycan identified by MALDI-TOF-MS. J. Proteome. Res. 8: 457-462. https://doi.org/10.1021/pr800655p
  24. Morelle, W., V. Faid, F. Chirat, and J. C. Michalski (2009) Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol. Biol. 534: 5-21.
  25. Nishikaze, T., S. Kawabata, and K. Tanaka (2014) In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry. Anal. Chem. 86: 5360-5369. https://doi.org/10.1021/ac500340t
  26. Ohtsubo, K. and J. D. Marth (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855-867. https://doi.org/10.1016/j.cell.2006.08.019
  27. Okamoto, M., K. Takahashi, T. Doi, and Y. Takimoto (1997) High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 69: 2919-2926. https://doi.org/10.1021/ac960910s
  28. Pabst, M., J. S. Bondili, J. Stadlmann, L. Mach, and F. Altmann (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79: 5051-5057. https://doi.org/10.1021/ac070363i
  29. Prien, J. M., B. D. Prater, Q. Qin, and S. L. Cockrill (2010) Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal. Chem. 82: 1498-1508. https://doi.org/10.1021/ac902617t
  30. Royle, L., M. P. Campbell, C. M. Radcliffe, D. M. White, D. J. Harvey, J. L. Abrahams, Y. G. Kim, G. W. Henry, N. A. Shadick, M. E. Weinblatt, D. M. Lee, P. M. Rudd, and R. A. Dwek (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376: 1-12. https://doi.org/10.1016/j.ab.2007.12.012
  31. Rudd, P. M., T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek (2001) Glycosylation and the immune system. Science 291: 2370-2376. https://doi.org/10.1126/science.291.5512.2370
  32. Sekiya, S., Y. Wada, and K. Tanaka (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77: 4962-4968. https://doi.org/10.1021/ac050287o
  33. Swiech, K., V. Picanco-Castro, and D. T. Covas (2012) Human cells: New platform for recombinant therapeutic protein production. Protein Expr. Purif. 84: 147-153. https://doi.org/10.1016/j.pep.2012.04.023
  34. Tep, S., M. Hincapie, and W. S. Hancock (2012) A general approach for the purification and quantitative glycomic analysis of human plasma. Anal. Bioanal. Chem. 402: 2687-2700. https://doi.org/10.1007/s00216-012-5712-5
  35. Toyoda, M., H. Ito, Y. K. Matsuno, H. Narimatsu, and A. Kameyama (2008) Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80: 5211-5218. https://doi.org/10.1021/ac800457a
  36. Viseux, N., E. de Hoffmann, and B. Domon (1997) Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal. Chem. 69: 3193-3198. https://doi.org/10.1021/ac961285u
  37. Walsh, G., and R. Jefferis. (2006) Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252. https://doi.org/10.1038/nbt1252
  38. Weiskopf, A. S., P. Vouros, and D. J. Harvey (1998) Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem. 70: 4441-4447. https://doi.org/10.1021/ac980289r
  39. Wu, S., R. Grimm, J. B. German, and C. B. Lebrilla (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome. Res. 10: 856-868. https://doi.org/10.1021/pr101006u
  40. Wuhrer, M., C. A. Koeleman, and A. M. Deelder (2009) Two-dimensional HPLC separation with reverse-phase-nano-LC-MS/MS for the characterization of glycan pools after labeling with 2-aminobenzamide. Methods Mol. Biol. 534: 79-91.
  41. Xia, B., C. L. Feasley, G. P. Sachdev, D. F. Smith, and R. D. Cummings (2009) Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387: 162-170. https://doi.org/10.1016/j.ab.2009.01.028
  42. Xie, Y., K. Tseng, C. B. Lebrilla, and J. L. Hedrick (2001) Targeted use of exoglycosidase digestion for the structural elucidation of neutral O-linked oligosaccharides. J. Am. Soc. Mass Spectrom. 12: 877-884. https://doi.org/10.1016/S1044-0305(01)00267-7
  43. York, W. S., L. L. Kiefer, P. Albersheim, and A. G. Darvill (1990) Oxidation of oligoglycosyl alditols during methylation catalyzed by sodium hydroxide and iodomethane in methyl sulfoxide. Carbohydrate Res. 208: 175-182. https://doi.org/10.1016/0008-6215(90)80097-M
  44. Zhou, H., P. G. Warren, J. W. Froehlich, and R. S. Lee (2014) Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal. Chem. 86: 6277-6284. https://doi.org/10.1021/ac500298a