Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.3.74

Differentiation of Glycan Diversity with Serial Affinity Column Set (SACS)  

Shin, Jihoon (Department of Chemistry, Wonkwang University)
Cho, Wonryeon (Department of Chemistry, Wonkwang University)
Publication Information
Mass Spectrometry Letters / v.7, no.3, 2016 , pp. 74-78 More about this Journal
Abstract
Targeted glycoproteomics is an effective way to discover disease-associated glycoproteins in proteomics and serial affinity chromatography (SAC) using lectin and glycan-targeting antibodies shows glycan diversity on the captured glycoproteins. This study suggests a way to determine glycan heterogeneity and structural analysis on the post-translationally modified proteins through serial affinity column set (SACS) using four Lycopersicon esculentum lectin (LEL) columns. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Through this study, some proteins were identified to have glycoforms with different affinity on a single glycoprotein. It will be particularly useful in determining biomarkers in which the disease-specific feature is a unique glycan, or a group of glycans.
Keywords
Targeted glycoproteomics; Serial Affinity Chromatography (SAC); Serial Affinity Column Set (SACS); lectins; glycan-targeting antibody; glycan diversity; disease associated glycoprotein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Macek, B.; Waanders, L. F.; Olsen, J. V.; Mann, M. Mol. Cell. Proteomics 2006, 5, 949.   DOI
2 Dai, S.; Jia, Y.; Wu, S.-L.; Isenberg, J. S.; Ridnour, L. A.; Bandle, R. W.; Wink, D. A.; Roberts, D. D.; Karger, B. L. J. Proteome Res. 2008, 7, 4384.   DOI
3 Getie-Kebtie, M.; Franke, P.; Aksamit, R.; Alterman, M. A. J. Proteome Res. 2008, 7, 3697.   DOI
4 Goudenege, S.; Dargelos, E.; Claverol, S.; Bonneu, M.; Cottin, P.; Poussard, S. Proteomics 2007, 7, 3289.   DOI
5 Cech, N. B.; Enke, C. G. Mass Spectrom. Rev. 2001, 20, 362.   DOI
6 Krause, E.; Wenschuh, H.; Jungblut, P. R. Anal. Chem. 1999, 71, 4160.   DOI
7 Smith, R. D. Int. J. Mass. Spectrom. 2000, 200, 509.   DOI
8 Mellors, J. S.; Gorbounov, V.; Ramsey, R. S.; Ramsey, J. M. Anal. Chem. 2008, 80, 6881.   DOI
9 Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Nat. Biotech. 1999, 17, 994.   DOI
10 Yoo, B.-S.; Regnier, F. E. Electrophoresis 2004, 25, 1334.   DOI
11 Thiellement, H.; Zivy, M.; Damerval, C.; Méchin, V. Plant Proteomics, Humana Press, 2007.
12 Ren, D.; Penner, N. A.; Slentz, B. E.; Mirzaei, H.; Regnier, F. J. Proteome Res. 2003, 2, 321.   DOI
13 Jung, K.; Cho, W. Anal. Chem. 2013, 85, 7125.   DOI
14 Jung, K.; Cho, W.; Regnier, F. E. J. Proteome Res. 2008, 8, 643.   DOI
15 Cho, W.; Jung, K.; Regnier, F. E. Anal. Chem. 2008, 80, 5286.   DOI
16 Cho, W.; Jung, K.; Regnier, F. E. J. Proteome Res. 2010, 9, 5960.   DOI
17 Drake, P. M.; Schilling, B.; Niles, R. K.; Prakobphol, A.; Li, B.; Jung, K.; Cho, W.; Braten, M.; Inerowicz, H. D.; Williams, K.; Albertolle, M.; Held, J. M.; Iacovides, D.; Sorensen, D. J.; Griffith, O. L.; Johansen, E.; Zawadzka, A. M.; Cusack, M. P.; Allen, S.; Gormley, M.; Hall, S. C.; Witkowska, H. E.; Gray, J. W.; Regnier, F.; Gibson, B. W.; Fisher, S. J. J. Proteome Res. 2012, 11, 2508.   DOI
18 Cho, W. Anal. Chem. 2015, 87, 9612.   DOI
19 Dwek, M. V.; Ross, H. A.; Leathem, A. J. C. Proteomics 2001, 1, 756.   DOI
20 Mirzaei, H.; Regnier, F. J. Chromatogr. B 2005, 817, 23.   DOI
21 Gong, C. X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. J. Neural Transm. 2005, 112, 813.   DOI
22 Rademacher, T. W.; Parekh, R. B.; Dwek, R. A. Annu. Rev. Biochem. 1988, 57, 785..   DOI
23 Nilsson, C. L. Lectins: Analytical Technologies, Elsevier, 2007.
24 Julka, S.; Regnier, F. J. Proteome Res. 2004, 3, 350.   DOI
25 Ueda, K.; Fukase, Y.; Katagiri, T.; Ishikawa, N.; Irie, S.; Sato, T.-A.; Ito, H.; Nakayama, H.; Miyagi, Y.; Tsuchiya, E.; Kohno, N.; Shiwa, M.; Nakamura, Y.; Daigo, Y. Proteomics 2009, 9, 2182.   DOI
26 Heo, S.-H.; Lee, S.-J.; Ryoo, H.-M.; Park, J.-Y.; Cho, J.-Y. Proteomics 2007, 7, 4292.   DOI
27 Larsen, M. R.; Højrup, P.; Roepstorff, P. Mol. Cell. Proteomics 2005, 4, 107.   DOI
28 Gajadhar, A. S.; White, F. M. Curr. Opin. Biotechnol. 2014, 28, 83.   DOI
29 Issaq, H. J.; Veenstra, T. D. Proteomic and Metabolomic Approaches to Biomarker Discovery, Elsevier, 2013.
30 Collier, T. S.; Hawkridge, A. M.; Georgianna, D. R.; Payne, G. A.; Muddiman, D. C. Anal. Chem. 2008, 80, 4994.   DOI
31 Pandey, A.; Mann, M. Nature 2000, 405, 837.   DOI
32 Breuker, K.; Jin, M.; Han, X.; Jiang, H.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2008, 19, 1045.   DOI
33 Armirotti, A.; Benatti, U.; Damonte, G. Rapid Commun. Mass Spectrom. 2009, 23, 661.   DOI
34 Benton, H. P.; Wong, D. M.; Trauger, S. A.; Siuzdak, G. Anal. Chem. 2008, 80, 6382.   DOI
35 McLafferty, F. W.; Breuker, K.; Jin, M.; Han, X.; Infusini, G.; Jiang, H.; Kong, X.; Begley, T. P. FEBS J. 2007, 274, 6256.   DOI