• 제목/요약/키워드: Global asymptotic stability

검색결과 88건 처리시간 0.021초

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF

THE ASYMPTOTIC STABILITY OF SOME INTEGRODIFFERENTIAL EQUATIONS

  • Chern, Jann-Long;Huang, Shu-Zhu
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we consider two delay equations with in-finite delay. We will give two sufficient conditions for the positive and zero equilibriums of these equations to be a global attractor respectively.

  • PDF

BEHAVIOR OF POSITIVE SOLUTIONS OF A DIFFERENCE EQUATION

  • TOLLU, D.T.;YAZLIK, Y.;TASKARA, N.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.217-230
    • /
    • 2017
  • In this paper we deal with the difference equation $$y_{n+1}=\frac{ay_{n-1}}{by_ny_{n-1}+cy_{n-1}y_{n-2}+d}$$, $$n{\in}\mathbb{N}_0$$, where the coefficients a, b, c, d are positive real numbers and the initial conditions $y_{-2}$, $y_{-1}$, $y_0$ are nonnegative real numbers. Here, we investigate global asymptotic stability, periodicity, boundedness and oscillation of positive solutions of the above equation.

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

  • Li, Xianyi;Agarwal, Ravi P.
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.787-797
    • /
    • 2007
  • In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$, n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$, is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

GLOBAL ANALYSIS FOR A DELAY-DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE

  • Elaiw, A.M.;Alshamrani, N.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권4호
    • /
    • pp.317-335
    • /
    • 2014
  • In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters $R_0$ (the basic infection reproduction number) and $R_1$ (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle's invariance principle.

GLOBAL ASYMPTOTIC STABILITY OF A HIGHER ORDER DIFFERENCE EQUATION

  • Hamza, Alaa E.;Khalaf-Allah, R.
    • 대한수학회보
    • /
    • 제44권3호
    • /
    • pp.439-445
    • /
    • 2007
  • The aim of this work is to investigate the global stability, periodic nature, oscillation and the boundedness of solutions of the difference equation $$x_{n+1}={\frac{Ax_{n-1}}{B+Cx_{n-2}{\iota}x_{n-2k}$$, n = 0, 1, 2,..., where A, B, C are nonnegative real numbers and $\iota$, k are nonnegative in tegers, $\iota{\leq}k$.

GLOBAL ATTRACTIVITY OF THE RECURSIVE SEQUENCE $x_{n+1}$ = $\frac{\alpha-{\beta}x_{n-1}}{\gamma+g(x_n)}$

  • Ahmed, A. M.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.275-282
    • /
    • 2008
  • Our aim in this paper is to investigate the global attractivity of the recursive sequence $x_{n+1}$ = $\frac{\alpha-{\beta}x_{n-1}}{\gamma+g(x_n)}$ under specified conditions. We show that the positive (or zero for $\alpha$ = 0) equilibrium point of the equation is a global attractor with a basin that depends on certain conditions posed on the coefficients and the function g(x).

  • PDF

GLOBAL STABILITY OF HIV INFECTION MODELS WITH INTRACELLULAR DELAYS

  • Elaiw, Ahmed;Hassanien, Ismail;Azoz, Shimaa
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.779-794
    • /
    • 2012
  • In this paper, we study the global stability of two mathematical models for human immunodeficiency virus (HIV) infection with intra-cellular delays. The first model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, $CD4^+$ T cells and macrophages taking into account the saturation infection rate. The second model generalizes the first one by assuming that the infection rate is given by Beddington-DeAngelis functional response. Two time delays are used to describe the time periods between viral entry the two classes of target cells and the production of new virus particles. Lyapunov functionals are constructed and LaSalle-type theorem for delay differential equation is used to establish the global asymptotic stability of the uninfected and infected steady states of the HIV infection models. We have proven that if the basic reproduction number $R_0$ is less than unity, then the uninfected steady state is globally asymptotically stable, and if the infected steady state exists, then it is globally asymptotically stable for all time delays.

The Dynamics of Solutions to the Equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$

  • Xu, Xiaona;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.153-164
    • /
    • 2010
  • We study the global asymptotic stability, the character of the semicycles, the periodic nature and oscillation of the positive solutions of the difference equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$, n=0, 1, 2, ${\cdots}$. where p, q ${\in}$ (0, ${\infty}$), q ${\neq}$ 2, k ${\in}$ {1, 2, ${\cdots}$} and the initial values $x_{-k}$, ${\cdots}$, $x_0$ are arbitrary positive real numbers.