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THE ASYMPTOTIC STABILITY OF SOME
INTEGRODIFFERENTIAL EQUATIONS

JANN-LONG CHERN' AND SHU-ZHU HUANG

ABSTRACT. In this paper we consider two delay equations with in-
finite delay. We will give two sufficient conditions for the positive
and zero equilibriums of these equations to be a global attractor
respectively.

1. Introduction

In this note we consider the following integrodifferential equations
with infinite delay

¢ _ ® pn(t - 3)
(1.1) P () +rp(t) = a /0 Koot
and '
1) FO+m0=a [ KO

where 7, a and 3 are positive constants; n is a positive integer and K is a
nonnegative function. One of the models with bounded delay describes
different periodic diseases and was proposed by M. C. Mackey and L.
Glass [1]. For more details of the derivation and numerical studying of
the models we can refer to the articles of M. C. Mackey and U. an der
Heiden [9], L. Glass and M. C. Mackey [2], and Tsen F.-S. P. [11]. J. K.
Hale and N. Sternberg [6] also gave some interesting and nice results for
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the numerical and chaotic problems of this type equation with bounded
delay.

The goal of this paper is to investigate the global stability of equa-
tions (1.1) and (1.2) respectively. We obtain some sufficient conditions
for the positive and zero equilibriums of equations (1.1) and (1.2) to be
a global attractor respectively. The main results and the proofs will be
stated in section 2.

2. Main Results

In this section we study the global asymptotic stability of the steady
states of equations (1.1) and (1.2) respectively. First we consider the
following integrodifferential equation.

, [ p"(t — s) _
(2-1) p'(t) +rp(t) = a/o K(s)—————-——ﬁ =) ds; t>0,
with the initial condition
(2.2) p(s) = ¢(s) > 0; s € (—00,0};

where r, a, # and n > 1 are positive constants. Here, we assume that ¢ is
piecewise bounded continuous and K is a nonnegative kernel satisfying

00

o0
(2.3) K1=/ K(s) ds < oo, K2=/ sK(s) ds < oo.
0 0
We give the following result about the globally asymptotic stability of
the zero solution of Eq. (2.1).

THEOREM 2.1. Suppose that (2.3) holds and p(t) is the positive
solution of (2.1)-(2.2) in [0, 00). Assume that

n—1
(2.4) %%n%ﬁ% <r, for n>1,
(2.5) %}- <r, for n=1,
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where
o —1
(2.6) w= {7 7P
Then
lim p(t) = 0.

t—o0

In order to prove Theorem 2.1, we need the following lemma.

LEMMA 2.2. Let f be a nonnegative function defined on [0, 00) such
that f is integrable on [0, 00) and uniformly continuous on [0, 00). Then
tl_i)m f@)=0.

o0

Proof. See, for example, Gopalsamy [3]. O

Proof of Theorem 2.1. Let F(u) = z%=. Then

ﬂm=-mm+aL“wa@u—m—Fwnw

(2.7 o0
= —rp(t) + a/ K(s)Q(t, s)p(t — s) ds,
0
where
_ peies)
W)= egap !
=B a=1
B +¢(2,8)7 ’

where £(t, s) lies in the segment joining the two points p(t — s) and 0.
It is easy to see that

n—1
28)  0<Q(ts) < (_gn:w—")? for n>1, forall ¢t>s,
(2.9) 0<Q(t,s) < -;— for n=1, forall t>s,
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where w is given in (2.6).
Define

(2.10) V(t) =p(t) + a/ooo [K(s) ' ([; Q(u + s, s)p(u) du)] ds.

From (2.1)-(2.3) and (2.8)-(2.10), it is easy to see that V(t) is well-
defined and V(t) > O for all ¢ > 0. Then from (2.1) and (2.10), we
obtain

V'(t) = (—r + a/ooo'K(s)Q(t +s,5) ds) p(t)
(2.11) < —~c*p(t)
<0 forall t>0,

wherfc*=r—%&>0forn>1;andc*l=r—%l>0for
n=1.

Then .
V() -V(0) < —c*/ p(s)ds forall t>0
0 ,
and thus .
c*/ p(s)ds<V(0)<oo forall t>0.
0
Hence

0</ p(s) ds < oo.
0

Since p(t) is positive and bounded, by (2.1) we obtain that |p'(t)| is
bounded which implies that p(t) is uniformly continuous on [0, ).
Thus, By Lemma 2.2,

lim p(t) =0.

t—o00

The proof is complete. a

Next, we consider the following delay equation
’ 1
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together with an initial condition of the form
(2.13) y(s) = ¢(s) > 0; s € (—00,0];

where 7, a, 8 are positive constants, the function K(s) # const. is a
nonnegative kernel satisfying the condition (2.3), and ¢ is a piecewise
continuous function on (—o00,0]. It is clear that (2.12) has a unique
constant steady state y* > 0 and y* satisfies

K
(2.14) y*(1+y*) = 2L

Now we give a sufficient condition for the positive steady state p* of
(2.12) to be a global attractor.

THEOREM 2.3. Assume that (2.3) holds, K3 = [ s2K(s) ds < oo,
and

1-+__2_K1_._
(1+0U)?

2
(2.15) o Ky ] Ka

[m"' A+L2] OFD?

0,
where L and U are defined by

(216) L = min (y(O) , ;(-;"f—lm)) . U=max (y(O) , E-i-{—l) ,

and

o

(2.17) m = max (——K—l mex | 40))

—00<t<0

Then every positive solution of (2.12) satisfies

lim y(t) = y*.

t—o00
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Proof. Let y(t) be the solution of (2.12) and (2.13). We divide the
proof into the following steps.

Step 1. We claim:
L<y(t)<U forall t>0,

where L and U are defined in (2.16)-(2.17).

Proof of above claim. It is clear that
y'(t) +ry(t) < oKy

since y(t) is positive and by the definition of K;. Then

v0 < (50 - 22 ) e 2 <o (30), 22) -0

Moreover, y'(t)+ry(t) > ﬁ";—K"J;S since y(t) < U < m, where m is defined
in (2.17). Hence

aK; ot aK,
t) > —_— r -_—
y(t) 2 (y(O) r(l+ m)) + (1 4+ m)
. aK1
> —— ] =L.
= i <y(0) ’ r(1+m)) L
The proof of above claim is complete. O

Step 2. Let y(t) = y* + z(¢). Then 2(t) is bounded and satisfies

’ * _ oo 1

Z'(t)+ry +7‘z(t)—a/0 K(s)1+y*+z(t—s) ds
or, by (2.14),

"t) = —-rz ! ” s 1 - S
(2.18) #(£) = —ra(t) + /0 K()[1+y*+z(t_s) | @

278




Attractors of delay equations

Set F(u) = Then (2.18) becomes

1+u
2(t) = —-rz2(t) + o /000 K(s)[F(y* +2(t —s)) — F(y")] ds
and thus

(2.19) 2'(t) = —rz(t) — a /oo K(s)Q(t, s)z(t — s) ds,
0

where Q(t,s) = Tﬁs(ltﬂs), and £(t,s) lies in the segment joining the
two points y* + z(t — s) and y*.

By Step 1, it is easy to see that

1

(2.20) 5T

1
Aoy S < grE

From (2.19)-(2.20) we obtain that

% [z(t) - a/ooo (K(s) . t; Q(u+s,s)z(u) du) ds}

(2.21) ) [r e /0°° K(s)Q(t +5,9) ds] 2(t)

Now, define V (t) by
(2.22)

V() = [z(t) —a /0 ~ <K(s) - /t i Qu + 5, 8)2(u) du) ds]z +VA),

where V] is a smooth function to be determined later.
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Then
V(t) = -2 [z(t) —a /0 ” (K(s) : /t ;Q(u +5,8)2(u) du) ds]
Jrra [T KRG+ 00) as] -2 + )
=2 [r +a /0 ” K(s)Q(t +s,3) ds] 22(t)
+2a [r +a /0 ” K(8)Q(t + 5, 9) ds] «(t)

. /ooo (K(s) . /t_s Qu + s,5)z(u) du) ds + V{(t).
By using the inequality
22(t)z(u) < 22(t) + 22(v)

we obtain that

Vi) < -2 [ +a [T KEQE+a9) ds] (1)
+a (r +a /0 " K($)Qt+5,9) ds) 2(t)
(2.23) : /O ~ (K(s) - /t i Qu+3,5) du) ds
+a (r +a /0oo K(s)Q(t + s,5) ds)

. /0 = (K(s) : / Q(u+s,5)2>(w) du) ds + V{(t)-
Choose

Va(t) =a/0°°{K(s) . [/t; (r+a/0°°K(m)Q(v+s+a:,x) da:)
(2.24) . </vt Qu+ s,8)2%(u) du) dv] }ds.
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Then, from Step 1, (2.20) and the conditions on K, it is easy to see
that V;(t) is well-defined for all £ > 0 and

V() < -2 ['r ta /0 * K()Q(t +s,9) ds] 2(t)

(2:25) +a [r + a/ow K(s)Q(t + s,5) ds] 2%(t)

./ooo (K(s) ./t;Q(u+s,s) du)ds

+ az?(t) /:o {K(s)Q(t + 8,38)

./tts [,-+a/°o K(z)Qv+ s+ z,z) dm] dv}ds

< —2r22(f) - 20 / K(s)——— ds 22(t)

(1+U)2
+a['r+a/ K(s)—(—T)2 ]z2(t)
o ([ e ) e
+az?(t) / oc’{K(.q)(-l—:}L—)2

[/ (r+a [ KOgrm i) dv]}ds

20K o?K.
={—2r___aL_+(ar+ 1 ) Kz

(1+U)? 1+L)?2) 1+ L)

a?K, Ko 2
+ (‘” tas L)2) + L2 }z ®

_ aKi ?Kq Kj
= ‘2{“’ a+ue <°‘T+ T+ L)z) 1+ L2 }zz(t)

= —2cz%(t)

where

aK1 a’K Ky
(2.26) c=r AN e (ar+ (1+I‘/1)2) Ak 0 (by (2.15)).
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Then . .
V({t) - V(0) = / V'(s) ds < —2¢ / 2(s) ds.
0 0

Because V'(t) is a nonnegative function, we get

i
26/ 2%(s) ds < V(0), forall t>0
0

and thus

o0
/ 22(s) ds < oo.
0

From Eq. (2.18) and z(t) is bounded, we obtain that |2/(t)| is also
bounded. _

Then 22(t) is uniformly continuous on. [0, c0).

By Lemma 2.2, we obtain that

. 2 _
i 2 =0

or, equivalently,
lim 2(¢t) = 0.
t—o00

This completes the proof of Theorem 2.3. O

REMARK 2.4. In Eq. (2.12), if the kernel function K(t) = te™* for
allt > 0, then K; = 1,K; = 2 and K3 = 6. Furthermore, if (2.15)
holds then, by Theorem 2.3, the unique positive steady state p* of
(2.12)-(2.13) is globally asymtotical stable.

References

[1] Glass L. and M. C. Mackey, Oscillation and chaos in physiological conirol
systems, Science 197 (1977), 287-289.

, Pathological conditions resulting from instabilities in physiological con-
trol systems, Annals of the New York Academy of Sciences 316 (1979), 214-235.

[3] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of
Population Dynamics, Kluwer Academic Publisher, Netherlands, 1992.

282




[4]

(5]
6]
(71
(8]
&)

Attractors of delay equations

Gopalsamy K., M. R. 8. Kulenovié¢ and G. Ladas, Oscillations and global at-
tractivity in respiratory dynamics, Dynamics and Stability of Systems 4 (1989),
131-139.

Gyéri L. and G. Ladas, Oscillation Theory of Delay Differential Equations with
applications, Oxford University Press, New York, 1991.

Hale J. K. and N. Sternberg, Onset of Chaos in Differential Delay equations,
J. Computational Physics 77 (1988), 221-239.

Kolmanovskii V. B., L. Torelli and R. Vermiglio, Stability of some test equa-
tions with delay, SIAM J. Math. Anal. 25 (1994), 948-961.

Lakshmikantham V., Lizhi Wen and B. Zhang, Theory of Differential Equa-
tions with Unbounded Delay, Kluwer Academic Publishers, 1994.

Mackey M. C. and U. an der Heiden, Dynamical diseases and bifurcations:
understanding functional disorders in physiological systems, Func. Biol. Med.
156 (1982), 156-164.

[10] Perko L., Differential Equations and Dynamical System, Springer-Verlag, New

York, Inc. , 1991.

[11] Tsen F. -8. P., Homoclinic Chaos in Delay Eguations, Proceeding of the Work-

shop on PDE (II), Taiwan, 1994, pp. 81-90.

DEPARTMENT OF MATHEMATICS, CENTER FOR COMPLEX SYSTEMS, NATIONAL
CENTRAL UNIVERSITY, CHUNG-LI1, TAIWAN, REPUBLIC OF CHINA
E-mail: chern@math.ncu.edu.tw

283




