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BEHAVIOR OF POSITIVE SOLUTIONS OF A DIFFERENCE

EQUATION

D.T. TOLLU, Y. YAZLIK∗ AND N. TAŞKARA

Abstract. In this paper we deal with the difference equation

yn+1 =
ayn−1

bynyn−1 + cyn−1yn−2 + d
, n ∈ N0,

where the coefficients a, b, c, d are positive real numbers and the initial
conditions y−2, y−1, y0 are nonnegative real numbers. Here, we investi-
gate global asymptotic stability, periodicity, boundedness and oscillation

of positive solutions of the above equation.
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1. Introduction

Rational difference equations which is an important class of nonlinear differ-
ence equations arise in many branches of science. Therefore, these equations
have been widely studied by mathematicians for the last decade. For example,
in [5], Cinar gave forms of the solutions of the rational difference equation

xn+1 =
xn−1

1 + xnxn−1
, n ∈ N0,

with the nonnegative initial conditions x−1, x0. In [2], Andruch-Sobilo et al.
investigated the behavior of the solutions of the rational difference equation

xn+1 =
axn−1

b+ cxnxn−1
, n ∈ N0,

with the positive real parameters a, b, c and the nonnegative initial conditions
x−1, x0. Shojaei et al. [18] investigated the stability and periodic character of
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the rational third-order difference equation

xn+1 =
αxn−1

β + γxnxn−1xn−2
, n ∈ N0,

where the parameters α, β, γ and the initial conditions x−2, x−1, x0 are real num-
bers. Dehghan and Rastegar [6] investigated the stability, the periodic character
and the boundedness nature of solutions of the third order difference equation

yn+1 =
αyn−1

β + γykny
k
n−1y

k
n−2

, n ∈ N0,

where the initial conditions y−2, y−1, y0 and the parameters α, β and γ are
positive real numbers and k ≥ 2 is a fixed integer. For some related studies, see
[1, 3, 8, 9, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 22, 23, 27, 28,
29, 30, 31, 33, 32, 34, 35, 36, 37, 38].

In this study we consider the rational difference equation

yn+1 =
ayn−1

bynyn−1 + cyn−1yn−2 + d
, n ∈ N0, (1)

where the coefficients a, b, c, d are positive real numbers and the initial condi-
tions y−2, y−1, y0 are nonnegative numbers. We investigate global asymptotic
stability, periodicity, boundedness and oscillation of positive solutions of Eq. (1).

It is easy to see that the change of variables yn =
√

d
cxn reduces Eq. (1) to the

next equation

xn+1 =
αxn−1

βxnxn−1 + xn−1xn−2 + 1
, n ∈ N0, (2)

with α = a
d , β = b

c and the initial conditions x−2, x−1, x0. Hence, from now on,
we will consider Eq. (2).

Let I be some interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. Then, for every set of initial conditions x−k, x−k+1,. . .,x0 ∈
I, the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k) , n ∈ N0, (3)

has a unique solution {xn}∞n=−k.

Definition 1.1. An equilibrium point for Eq. (3) is a point x ∈ I such that
x = f (x, x, . . . , x).

Definition 1.2. A sequence {xn}∞n=−k is said to be periodic with period p if
xn+p = xn for all n ≥ −k.

Definition 1.3 (Stability). Let x be an equilibrium point of Eq. (3).
(i) The equilibrium point x of Eq. (3) is locally stable if for every ε > 0,

there exists δ > 0 such that for all x−k, x−(k+1),. . .,x0 ∈ I with |x−k − x| +
|x−k+1 − x|+ . . .+ |x0 − x| < δ, we have |xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq. (3) is locally asymptotically stable if x is a
locally stable and there exists γ > 0, such that for all x−k, x−k+1,. . .,x0 ∈ I with
|x−k − x|+ |x−k+1 − x|+ . . .+ |x0 − x| < γ, we have lim

n→∞
xn = x.
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(iii) The equilibrium point x of Eq. (3) is a global attractor if for all x−k, x−k+1,
. . ., x0 ∈ I, we have lim

n→∞
xn = x.

(iv) The equilibrium point x of Eq. (3) is global asymptotically stable if x is
locally stable and x is also a global attractor of Eq. (3).

(v) The equilibrium point x of Eq. (3) is unstable if x is not locally stable.

The lineralized equation associated with Eq. (3) is the equation

zn+1 =
k∑

i=0

∂f

∂xi
(x, x, . . . , x) zn−i, n ∈ N0. (4)

The characteristic equation associated with Eq. (3) is the equation

λk+1 −
k∑

i=0

∂f

∂xi
(x, x, . . . , x)λk−i = 0. (5)

Theorem 1.4 ([2], Linearized Stability Theorem). Assume that f is a function
in C1 and let x be an equilibrium point of Eq. (3). Then the following statements
are true:

(i) If all roots of Eq.(5) lie in the open disk |λ| < 1, then x is locally asyptot-
ically stable.

(ii) If at least one root of Eq.(5) has absolute value greater than one, then x
is unstable.

Definition 1.5. An equilibrium point x of Eq. (3) is called a hyperbolic equi-
librium point if Eq.(5) has no roots with absolute value equal to one. An equi-
librium point x of Eq. (3) is called a nonhyperbolic equilibrium point if Eq.(5)
has at least one root with absolute value equal to one.

Theorem 1.6 ([1], Theorem 1.6.3). Assume that the following conditions hold:
Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
(i) f ∈ C [(0,∞)× (0,∞) , (0,∞)].
(ii) f (x, y) is decreasing in x and strictly decreasing in y.
(iii) xf (x, x) is strictly increasing in x.
(iv) The equation

xn+1 = xnf (xn, xn−1) , n ∈ N0, (6)

has a unique positive equilibrium x. Then x is a global attractor of all positive
solutions of Eq.(6).
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2. Stability of Eq. (2)

In this section we describe local and global behaviors of the solutions of Eq.
(2). For the equilibrium points of Eq. (2), we write the equation

x =
αx

(β + 1)x2 + 1
,

from which it follows that

x
(
(β + 1)x2 + 1− α

)
= 0.

From the last equality, it is easily seen that when α ≤ 1, the unique equilibrium
point of Eq. (2) is x1 = 0 and when α > 1, Eq. (2) has three equilibrium points

such that x1 = 0, x2 =
√

α−1
β+1 and x3 = −

√
α−1
β+1 .

Let

f : [0,∞)
3 −→ [0,∞)

be a function defined by

f (x, y, z) =
αy

βxy + yz + 1
. (7)

From (7), the partial derivatives of f (x, y, z) evaluated at an equilibrium x of
Eq. (2) are

fx (x, x, x) =
−αβx2(

(β + 1)x2 + 1
)2 , (8)

fy (x, x, x) =
α(

(β + 1)x2 + 1
)2 , (9)

fz (x, x, x) =
−αx2(

(β + 1)x2 + 1
)2 . (10)

By the following theorem, we determine local behavior of the solutions of Eq.
(2).

Theorem 2.1. The following statements are true:
(i) When α < 1 the unique equilibrium point x1 = 0 of Eq. (2) is locally

asymptotically stable.
(ii) When α > 1 the equilibrium point x1 = 0 of Eq. (2) is unstable.

(iii) When α > 1 the positive equilibrium point x2 =
√

α−1
β+1 of Eq. (2) is

unstable.

(iv) When α > 1 the positive equilibrium point x2 =
√

α−1
β+1 of Eq. (2) is

nonhyperbolic.

Proof. (i)-(ii) By using (8)-(10), we get the lineralized equation associated with
Eq. (2) about the equilibrium point x1 = 0 as

zn+1 = αzn−1, n ∈ N0. (11)
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The characteristic equation of Eq. (11) is

λ3 − αλ = 0

with the roots λ1 = 0, λ2 =
√
α and λ3 = −

√
α. It is clear that if α < 1 then

|λi| < 1 for i = 1, 2, 3 and if α ≥ 1 then |λ2| = |λ3| ≥ 1.
(iii)-(iv) By using (8)-(10), we can write the lineralized equation associated

with Eq. (2) about the equilibrium point x2 =
√

α−1
β+1 as follows:

zn+1 +
β (α− 1)

α (β + 1)
zn − 1

α
zn−1 +

(α− 1)

α (β + 1)
zn−2 = 0, n ∈ N0,

which has the characteristic equation

P (λ) := λ3 +
β (α− 1)

α (β + 1)
λ2 − 1

α
λ+

(α− 1)

α (β + 1)
= 0. (12)

From Eq. (12), it is easily seen that P (−1) = 0, that is, |λi| = 1 for at least

i, (i = 1, 2, 3). So, the positive equilibrium point x2 =
√

α−1
β+1 of Eq. (2) is

unstable. Also, since |λi| = 1 for at least i, (i = 1, 2, 3), the positive equilibrium

point x2 =
√

α−1
β+1 of Eq. (2) is nonhyperbolic. �

Theorem 2.2. Assume that α < 1. Then, the unique equilibrium point x1 = 0
of Eq. (2) is globally asymptotically stable.

Proof. Let {xn}∞n=−2 be a solution of Eq. (2). From Theorem 7, the equilibrium
point x1 = 0 of Eq. (2) is locally asymptotically stable, when α < 1. Hence, It
is sufficient to show that

lim
n→∞

xn = x = 0.

From Eq. (2), we write

xn+1 =
αxn−1

βxnxn−1 + xn−1xn−2 + 1
≤ αxn−1 (13)

for n ∈ N0. From the inequality in (13), we get the inequalities

x2n+1 ≤ αx2n−1 ≤ α2x2n−3 ≤ · · · ≤ αn+1x−1 (14)

and

x2n+2 ≤ αx2n ≤ α2x2n−2 ≤ · · · ≤ αn+1x0 (15)

for n ∈ N0. From which (14) and (15) follows that

lim
n→∞

x2n+1 = lim
n→∞

x2n+2 = 0,

if α < 1. So, the proof is completed. �



222 D.T. Tollu, Y. Yazlik and N. Taskara

3. Unbounded Solutions of Eq. (2)

In this section we show that Eq. (2) has the unbounded solutions.

Theorem 3.1. Assume that α > 1 and let {xn}∞n=−2 be a solution of Eq. (2).
Then, the following statements are true:

(i) If x−1 = 0 and x−2x0 ̸= 0 (or if x−2 = x−1 = 0 and x0 ̸= 0), then
x2n−1 = 0 and x2n → ∞ as n → ∞.

(ii) If x0 = 0 and x−2x−1 ̸= 0 (or if x−2 = x0 = 0 and x−1 ̸= 0), then
x2n−1 → ∞ as n → ∞ and x2n = 0.

Proof. First, from Eq. (2), we write

x2n+1 =
αx2n−1

βx2nx2n−1 + x2n−1x2n−2 + 1
, n ∈ N0, (16)

and

x2n+2 =
αx2n

βx2n+1x2n + x2nx2n−1 + 1
, n ∈ N0. (17)

It is clear that if x−2 = x−1 = x0 = 0 then x2n = x2n+1 = 0 which is the trivial
solution xn = 0 of Eq. (2) for n ∈ N0.

(i) If x−1 = 0, then we get that

x2n−1 = 0, n ∈ N0 (18)

from Eq. (16). By substituting (18) in Eq. (17), we have the equation

x2n+2 = αx2n, n ∈ N0

from which it follows that

x2n = αnx0, n ∈ N0. (19)

The result follows from (19) for α > 1.
(ii) If x0 = 0, then we get

x2n−2 = 0, n ∈ N (20)

from Eq. (17). By substituting (20) in Eq. (16), we have the equation

x2n+1 = αx2n−1, n ∈ N

from which it follows that

x2n−1 = αn−1x1, n ∈ N. (21)

We also observe that

x1 =
αx−1

x−1x−2 + 1
. (22)

Consequently, from Eq. (21) and Eq. (22), we get

x2n−1 =
αnx−1

x−1x−2 + 1
, x2n = 0, n ∈ N. (23)

The result follows from (23) for α > 1. �
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4. Periodic Solutions of Eq. (2)

In this section we show that Eq. (2) has the periodic solutions. The following
theorem studies period 2 solutions of Eq. (2) under the condition α = 1.

Theorem 4.1. Assume that α = 1. Then, the following statements are true:
(i) Eq. (2) has the prime period 2 solutions in the form of

. . . , p, q, p, q, . . . .

(ii) Every solution of Eq. (2) converges to a period 2 solution of Eq. (2).

Proof. (i) Let

. . . , p, q, p, q, . . .

be a period 2 solution of Eq. (2) with p ̸= q. Then, we write

p =
αp

(β + 1) pq + 1
, q =

αq

(β + 1) pq + 1
,

from which it follows that

(p− q) ((β + 1) pq + 1− α) = 0. (24)

The equality in (24) implies that if α = 1, then pq = 0. So, there is a period 2
solution either in the form of

. . . , p, 0, p, 0, . . .

or in the form of

. . . , 0, q, 0, q, . . . .

(ii) Assume that α = 1 and let {xn}∞n=−2 be a solution of Eq. (2). Then, for
n ∈ N0, we have that

xn+1 − xn−1 =
−βxnx

2
n−1 − x2

n−1xn−2

βxnxn−1 + xn−1xn−2 + 1
≤ 0.

from which it follows that

x2n+1 ≤ x2n−1, x2n+2 ≤ x2n. (25)

The inequalities in (25) imply that while the even-subscript terms of the solution
{xn}∞n=−2 decreasingly converge one of the periodic points of the solution, the
odd-subscript terms decreasingly converge another. �

The following theorem studies period 2 solutions of Eq. (2) under the condi-
tion α > 1.

Theorem 4.2. Assume that α > 1 and x−2x−1 = x−1x0 = α−1
β+1 . Then, Eq. (2)

has the periodic solutions with period 2.



224 D.T. Tollu, Y. Yazlik and N. Taskara

Proof. First, we note that if x−2x−1 = x−1x0 = α−1
β+1 , then x−2x−1x0 ̸= 0, and

so xn > 0 for n ∈ N0. Thus, we can multiply both sides of Eq. (2) by xn as
follows:

xn+1xn =
αxnxn−1

βxnxn−1 + xn−1xn−2 + 1
, n ∈ N0. (26)

By applying the change of variables

xnxn−1 = un (27)

to Eq. (26), we get the equation

un+1 =
αun

βun + un−1 + 1
, n ∈ N0. (28)

On the other hand, the change of variables (27) yields

xn =
un

un−1
xn−2, n ∈ N0. (29)

Obviously, the equilibrium solutions of Eq. (28) satisfies Eq. (29). If α > 1,
then Eq. (28) has the zero equilibrium point u1 = 0 and the positive equilibrium
point u2 = α−1

β+1 .

The equilibrium solution un = 0 is a singular case for Eq. (29). In this case,
from the assumption xnxn−1 = 0 and Eq. (2), we get that

xn+1 = αxn−1, n ∈ N0. (30)

It is clear that Eq. (30) does not have any periodic solution for α > 1.
The equilibrium solution un = α−1

β+1 satisfies Eq. (29). In this case, from the

assumption xnxn−1 = α−1
β+1 and Eq. (2), we get that

xn+1 = xn−1, n ∈ N0, (31)

which implies that Eq. (2) has the periodic solutions with period 2. More
precisely, if α > 1 and x−2x−1 = x−1x0 = α−1

β+1 , then the form of the period 2

solution is

. . . ,
α− 1

(β + 1) p
, p,

α− 1

(β + 1) p
, p, . . . .

So, the proof is completed. �

We need the next lemmas.

Lemma 4.3. The positive equilibrium point u2 = α−1
β+1 of Eq. (28) is global

attractor.

Proof. Let

g : (0,∞)× (0,∞) −→ (0,∞)

be a function defined by

g (u, v) =
α

βu+ v + 1
. (32)
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First, from (32), we evaluate the partial derivatives

gu (u, v) =
−αβ

(βu+ v + 1)
2 < 0, gv (u, v) =

−α

(βu+ v + 1)
2 < 0. (33)

Therefore, g (u, v) is is decreasing in x and strictly decreasing in y. Second, we
consider the function

h (u) = ug (u, u) =
αu

(β + 1)u+ 1
. (34)

From (34), we have

h′ (u) =
α

((β + 1)u+ 1)
2 > 0,

which shows that the function h (u) = ug (u, u) is strictly increasing in u. So,
the conditions of Theorem 1.6 hold. Consequently, we have that

lim
n→∞

un =
α− 1

β + 1
, (35)

which completes the proof. �

Lemma 4.4. f (x, y, z) is monotonically decreasing in x, z ∈ [0,∞) for each
y ∈ [0,∞), and f (x, y, z) is monotonically increasing in y ∈ [0,∞) for each x,
z ∈ [0,∞).

Proof. The result can be seen from the partial derivatives of f (x, y, z) in (8)-
(10). �

Theorem 4.5. Assume that α > 1 and x−1x0 ̸= 0. Then, every non-equilibrium
solution of Eq. (2) converges to a period 2 solution of Eq. (2).

Proof. Assume that α > 1 and x−1x0 ̸= 0. Here, it is insignificant whether
x−2 = 0 or x−2 ̸= 0. Because, if x−1x0 ̸= 0 and x−2 = 0, then we have by using
Eq. (2) that x1 = αx−1

βx0x−1+1 ̸= 0. So, we may start with nonzero initial values

x−2, x−1, x0 which causes xn > 0.
The limit in (35) along with (27) implies that

lim
n→∞

xn+1xn =
α− 1

β + 1
. (36)

Let

0 < xn+1 <

√
α− 1

β + 1
(37)

for n ∈ N0. From (37) and Lemma 4.4, we get that

lim
n→∞

xn+1 = l (38)

such that 0 < l <
√

α−1
β+1 . By using the limit in (38), we again write (36) as

follows:

lim
n→∞

xn+1 lim
n→∞

xn = l lim
n→∞

xn =
α− 1

β + 1
. (39)
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From (39), it follows that

L = lim
n→∞

xn =
α− 1

(β + 1) l
. (40)

So, the proof is completed. �
Corollary 4.6. Assume that α > 1 and x−1x0 ̸= 0. Then, every solution of
Eq. (2) is bounded.

Proof. The result follows from (38) and (40). �
Corollary 4.7. Assume that α > 1 and x−1x0 ̸= 0. Then, every non-equilibrium

solution of Eq. (2) eventually oscillates about x2 =
√

α−1
β+1 with a semicycle of

length one.

Proof. Due to the assumption (37), there exists the inequality 0 < l <
√

α−1
β+1 .

So, from (40), we get the inequality

L =
α− 1

(β + 1) l
>

√
α− 1

β + 1
,

which shows that every solution of Eq. (2) eventually oscillates about x2 =√
α−1
β+1 with a semicycle of length one. �

5. Numerical Examples

In this section, we give numerical examples for the positive solutions of Eq.
(2) in the cases α < 1, α = 1 and α > 1.

Plot of x(n+1)=0.9x(n–1)/(3x(n)x(n–1)+x(n–1)x(n–2)+1)
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20 40 60 80 100

n

Figure 1. If we take α = 0.9, β = 3, x−2 = 0.1, x−1 = 1.2,
x0 = 0.17, then the solution of Eq. (2) is as follows:



Behavior of Positive Solutions of a Difference Equation 227

Plot of x(n+1)=x(n–1)/(3x(n)x(n–1)+x(n–1)x(n–2)+1)
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Figure 2. If we take α = 1, β = 3, x−2 = 0.01, x−1 = 1.2,
x0 = 0.17, then the solution of Eq. (2) is as follows:

x(n)
Positive Equilibrium

 

Plot of x(n+1)=2.1x(n–1)/(3x(n)x(n–1)+x(n–1)x(n–2)+1)
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 x
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n

Figure 3. If we take α = 2.1, β = 3, x−2 = 2.3, x−1 = 5.1,
x0 = 7.8, then the solution of Eq. (2) is as follows:

6. Conclusion

We summarize our results related to the positive solutions of Eq. (2) in the
following table:
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Cases Results

x−1 = x0 = 0 There is the trivial solution xn = 0 for n ∈ N0.

α < 1 and x−1x0 ̸= 0
The equilibrium point x1 = 0 of Eq. (2)

is globally asymptotically stable.

α ≥ 1 and x−2x−1x0 ̸= 0 Eq. (2) has the prime period 2 solutions.

α ≥ 1 and x−1x0 ̸= 0
Eq. (2) has the prime period 2 solutions.

Also, every non-equilibrium solution of Eq. (2)
converges to a period 2 solution of the equation.

x−1 = 0 and x0 ̸= 0
There is a unbounded solution such that

x2n−1 = 0 and x2n → ∞ as n → ∞.

x−1 ̸= 0 and x0 = 0
There is a unbounded solution such that

x2n−1 → ∞ as n → ∞ and x2n = 0.
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