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THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL
ASYMPTOTIC STABILITY FOR A FOURTH-ORDER
RATIONAL DIFFERENCE EQUATION

XI1ANYI LT AND RAvVI P. AGARWAL

ABSTRACT. In this paper, the following fourth-order rational difference
equation

@b +zn—2a}_s+a

zhan_o+28_5+a

Intl = , n=0,12,...,

where a,b € [0,00) and the initial values z_3,z_2,2—1,20 € (0, o0),
is considered and the rule of its trajectory structure is described clearly
out. Mainly, the lengths of positive and negative semicycles of its nontriv-
ial solutions are found to occur periodically with prime period 15. The
rule is 11,17,1%7,47,3%,17,2%,27 in a period, by which the positive
equilibrium point of the equation is verified to be globally asymptotically
stable.

1. Introduction

It is extremely difficult to understand thoroughly the global behaviors of
solutions of rational difference equations although they have simple forms (or

expressions). One can refer to [1-12], especially [1, 6] for examples to illustrate
this.

The study of rational difference equations of order greater than one is quite
challenging and rewarding because some prototypes for the development of the
basic theory of the global behavior of nonlinear difference equations of order
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greater than one come from the results for rational difference equations. For
this, see, for example, the papers in the journal of “Advances in Difference
Equations” and the references cited therein. Furthermore, there have not been
any effective general methods to deal with the global behavior of rational differ-
ence equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.
Recently, S. Kalabuai¢ and M. R. S. Kulenovi¢ [5] considered the rate of
convergence of solutions of the following second-order rational difference equa-
tion
(E1) Tpt1 = j:gﬁ: igﬁ;—_}l , m=0,1,...,
with nonnegative parameters ¢, 3, v, 4, B, C and nonnegative initial conditions
T_1,%p.
M. R. S. Kulenovi¢ et al 7] investigated the global behavior of solutions of
the following second-order rational difference equation

o+ Bzn
A+ Bz, +Cxpny
where the parameters «, 8, A, B, C and the initial conditions x_1,x are non-
negative.
Tim Nesemann [12] utilized the Strong Negative Feedback Property of [2]
to study the global asymptotic stability of the following third-order rational
difference equation

(E2) Tn+1 =

¥ n:0717""

Tpn—1+ TnTpn—2
E Tni1 = ——— "2 p=0,1,...
( 3) n+1 TnZrm1 + Tna s 3
where the initial values z_o,2_1,z¢ € (0, 00).
In this paper we consider the following fourth-order rational difference equa-
tion

(1) Tnyl = n=0,1,2,...,
where a,b € [0,00) and the initial values x_3,z_2,2_1, %0 € (0, 00).

It is key for us to find that the lengths of positive and negative semicycles
of nontrivial solutions of equation (1) occur periodically with prime period
15. The rule is 17,17,1% 47 ,37,17,2%,27 in a period, by which the positive
equilibrium point of the equation is verified to be globally asymptotically stable.
Our main idea is to analyze the perturbation of the initial values to the influence
of the trajectory structure rule.

According to our knowledge, equation (1) has not been studied so far. There-
fore, to study its qualitative properties is theoretically meaningful.

It is easy to see that the positive equilibrium Z of equation (1) satisfies

4+ 7 +a

T= 5———
Tz +10+a’
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from which one can see that equation (1) has a unique positive equilibrium
z=1.

When b = 0, equation (1) is trivial. Hence, we assume in the sequel that
b>0.

In the following, we state some main definitions used in this paper.

Definition 1.1. A positive semicycle of a solution {z,}52 _5 of equation (1)
consists of a “string” of terms {z;, 2141,...,2m}, all greater than or equal to
the equilibrium z, with [ > —3 and m < oo such that

either [=~3 or [>-3 and x,_1<Z%
and
either m=c0 or m<oc and x4 <7T.
A negative semicycle of a solution {z,}5> _5 of equation (1) consists of a

“string” of terms {z;,%)4+1,...,Zm}, all less than Z, with [ > —3 and m < oo
such that

either |=-3 or I >-3 and z.1>%
and
either m=00 or m<oo and x4 >7.

The length of a semicycle is the number of the total terms contained in it.

Definition 1.2. A solution {z,}32 _5 of equation (1) is said to be eventually
trivial if z,, is eventually equal to Z = 1; Otherwise, the solution is said to be
nontrivial.

For the other concepts in this paper, see [1, 6].

2. Two lemmas

Before to draw a qualitatively clear picture for the positive solutions of
equation (1), we first establish two basic lemmas which will play a key role in
the proof of our main results.

Lemma 2.1. A positive solution {x,}> _5 of equation (1) is eventually equal
to 1 if and only if

(2) (_g —1)(w_1 = 1){(xo — 1)(zo —z_3) = 0.

Proof. Assume that (2) holds. Then according to equation (1), it is easy to see
that the following conclusions hold.

HIfx_5=1,thenz, =1forn>4;

ii)If z_1 =1, then z, = 1 for n > 5;

iii) If zg = 1, then z,, = 1 for n > 6;

vi) If g = z_3, then 2z, =1 for n > 7.

Conversely, assume that

(3) (x—2 = 1)(z_1 — 1)(zo — 1){(xg —z_3) #0.



790 XIANYI LI AND RAVI P. AGARWAL

Then one can show that
Zn#1 forany n>1.
Assume the contrary that for some N > 1,
4) zy =1 andthat z,#1 for —-2<n<N-1.

Clearly,

b b
Tn_ +1:N_31'N__4 +a
1 =N =

T 1TN-3 + TRy +a’
which implies 2y _1 = zny_4 and by (3), N > 2. Thus, from

b
w?v_2 +IN_aTy_5+a

IN_4=2ITN_1= ,
Ty _oTN-1+ Ty _s+a

we can derive (xy—4 — 1)(z} _5(zn_a+ 1) +a) = 0, which contradicts (4). O
Remark 2.1. If the initial conditions do not satisfy equality (2), then, for any
solution {z,} of equation (1), z,, # 1 for n > —2 and z,, # Zn_3 for n > 0.

Lemma 2.2. Let {z,}32 _3 be a nontrivial positive solution of equation (1).
Then the following conclusions are true:

(8) (Zng1 — 1)(@p—2 — 1)(zb — 2% _5) < 0 for n > 0;

(b) (Zn+1 — Zn—2)(Tn—2 ~ 1) < 0 for n > 0;

() (Tnt1 = 1)(zn-2 — V)(zn_3 —1) > 0 for n > 1.
Proof. 1t follows in light of equation (1) that

(x5 — zh_3)(@n—2 = 1)
b, o+l _s+a

Tp+1 —1=— , n=0,1,2,...

and
(1- $n—2)(x2(1 +Zn-2) +a)
a2+ 2l_s+a

T+l — Tp-2 = , n=0,1,2,...,

from which Inequalities (a) and (b) follow. Inequality (b) implies
(Tn — Tn—3)(@n-3—1) <0 forn > 1,

which, together with Inequality (a) and by noticing (2 —2%_;)(zn —Zn_3) > 0
when b > 0, indicates Inequality (c). And so the proof is complete. O

3. Main results and their proofs

First we analyze the structure of the semicycles of nontrivial solutions of
equation (1). Here, we confine us to consider the situation of the strictly
oscillatory solution of equation (1).

Theorem 3.1. Let {x,}52_, be any strictly oscillatory solution of equation
(1). Then, the lengths of positive and negative semicycles of the solution peri-
odically successively occur with prime period 15. And in a period, the rule is
17,17,1%,4-,3+,1-, 2%, 2.
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Proof. By Lemma 2.2 (c), one can see that the length of a negative semicycle
is not larger than 3, whereas, the length of a positive semicycle is at most 4.
Based on the strictly oscillatory character of the solution, we see, for some
integer p > 0, one of the following four cases must occur:

Casel: zp3> 1,25 20 <1l,zp_1 >1and zp > 1;

Case 2: zp-3 > 1,2p_0 < 1,2p—1 > 1 and z, < 1;

Case 3: zp_3 > 1,25 2 <1751 <land z, > 1;

Cased: zp 3 > 1,25 2 <1,2p_1 <land iz, <1

If Case 1 occurs, it follows from Lemma 2.2 (c) that zp11 < 1, Zp42 < 1,
Zpys > 1, Zpya < Lizpis > 1, 2pge < 1, Zppr < 1, Tpig < 1, 7549 < 1,
Tpt+10 > 1, Tp+11 > 1, Tpt12 > 1, Tpt13 < 1, Tpt+14 > 1, Tpt+15 > 1, Tpt16 < 1,
Tpr17 < 1, Tpr1g > 1, Zpy19 < 1, Tpyoo > 1, Tprar <1, Tproo <1, Zppo3 < 1,
Tpr2a <1, Tpias > 1, Tpyoe > 1, Tpyor > 1, Tpios <1, Tpiog > 1, Tprao > 1,
Tp+31 < 1, Tpy3a <1, Tpy33 > 1, Tpy3a < 1, Tpy3s5 > 1, zpy36 < 1, zpy37 < 1,
Tpi3s < 1, Tpizo < 1, Tpyao > 1, Tpyar > 1, Tpyao > 1, Tpraz < 1, Tppaa > 1,
Tpras > 1, Tpyae < 1, Tpyar < 1, Tprag > 1, Tpyae < 1, Tpys0 > 1, Tpis1 < 1,
Tpi52 < 1, Tpisa <1, Zpysa < 1, Tpyss > 1, Tpise > 1, Tpisr > 1, Tpyss < 1,
Tpts9 > 1, Tpieo > 1, Tpye1 < 1, Tpye2 < 1, Tpiea > 1, Tprea < 1, Tpres > 1,
Tpt66 < 1, Tpt67 < 1, Tpre8 < 1, Tpi69 < 1,....

It means that the rule for the lengths of positive and negative semicycles
of the solution of equation (1) to successively occur is ...,1+,17,1F, 47,37,
1-,2+,27,1F,17,1%,4-,3+,1-,2+,2-,1+,1,1%,4-,3+ 1-,2¥,27, 1+ 17,
1+,4-,3+, 1-,2% 27, 17,1-,1%,....

If Case 2 occurs, then Lemma 2.2 (c) implies that zp41 < 1, Tpye < 1,
Tpt3 < 1, Tppa > 1, Tpys > 1, kpre > 1, Tppr < 1, Tpyg > L, Tpye > 1,
Tp+10 < 1, Tp+11 < 1, Tpi12 > 1, Tpt13 < 1, Tp+14 > 1, Tp+1s < 1, Tpti16 < 1,
Tpr17 < 1, Tpy18 < 1, Tpyr9 > 1, Tppoo > 1, Tpror > 1, Tpraz < 1, Tpyos > 1,
Tpr2a > 1, Zpios < 1, Tpyos < 1, Tpyor > 1, Tpros <1, Tpiag > 1, Tpiao < 1,
Tpi31 <1, Tpy32 <1, Tpys33 < 1, Tpyaa > 1, Tpyzs > 1, Tpise > 1, Tpisr < 1,
Tpr3s > 1, Tpizo > 1, Tpyao < 1, Zpya1 <1, Tpyaz > 1, Tpiag <1, Tpirag > 1,
Tptas < 1, Tpyas <1, Tpyar <1, Tpyag < 1, Tprao > 1, Tpys0 > 1, Tpis1 > 1,

This shows the rule for the numbers of terms of positive and negative
semicycles of the solution of equation (1) to successively occur still is 47,3%,17,
2+,27, 1+,17, 1+,4-.3+, 1= 2%, 2=, 1+ 17,1F 47,3+, 17,2F, 27, 1*,1",
1+,4=,3%,17,2F,2=,1+,1—,1F, ...

When Case 3 or Case 4 happens, a similar deduction leads to that z,,1 <1,
Tp+2 > 1, Tp43 < 1, Tpiq < 1,$p+5 < 1, Tpte < 1, Tp4+7 > 1, Tpig > 1,$p+9 >
L, zpy10 < 1, 2pi1n > 1, @pr12 > 1, pr13 < 1, Tpr1a < 1, Tpr1s > 1,
Tpr16 < 1, Tpr17 > 1, Tpy1s < 1, Tpp19 < 1, Tproo < 1, Tppon < 1, Tpyo2 > 1,
Tp423 > 1, Tpt24 > 1, Tpt25 < 1, Tpi26 > 1, Tp427 > 1, Tpt+28 < 1, Tpi29 < 1,
Tpr30 > 1, Tpia1 <1, Tpyse > 1, py33 < 1, Tpiaa < 1, Tpras <1, Tpyse < 1,
Tpyar > 1, Tpras > 1, Tpizg > 1, Tpiao < 1, Tprar > 1, Tpiraz > 1, Tpgas < 1,

)
or
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Tpt1 < 1, Tpyra > 1, Tpyg > 1, Zppa > Lzpys < 1, Tprs > 1, zpy7 > 1,
Zpts < 1, Tpr9 <1, Tpr10 > 1, 2py11 < 1, Tpr1e > 1, Tppa3 < 1, Zpr1a < 1,
Tpt1s < 1, Tpyie < 1, Tpy17 > 1, ZTpr18 > 1, Tpr19 > 1, Tppao < 1, Zpi21 > 1,
ZTpyo2 > 1, Tpyaz <1, Tpyaa <1, Tpyas > 1, Tpyas < 1, Tpyar > 1, Tpyos < 1,
Tpt29 < 1, Tp+30 < 1, Tpt31 < 1, Tpy32 > 1, Tp433 > 1, Tpt34 > 1, Tp435 < 1,
Tpt36 > 1, Tprsr > 1, Tpy3g < 1, Tppa9 < 1, Tprao > 1, Tpyar < 1, Tpya2 > 1,
Tpyq3 < 1,:L'p+44 <1, Tptas < 1, Tpta6 < 1,....

Thus, the same regulation is valid for the lengths of positive and negative
semicycles which occur successively. The proof is complete. O

Remark 3.1. It is known to all that the four cases in the proof of Theorem 3.1
are caused by the perturbation of the initial around the equilibrium point. So,
the theorem 3.1 actually indicates that the perturbation of the initial values
may lead to the variation of the trajectory structure rule for the solutions of
equation (1).

Next, we state the second main result in this note.

Theorem 3.2. Assume that a,b € [0,00). Then the positive equilibrium of
equation (1) is globally asymptotically stable.

Proof. When b = 0, equation (1) is trivial. So, we only consider the case
b > 0, and prove that the positive equilibrium point T of equation (1) is both
locally asymptotically stable and globally attractive. The linearized equation
of equation(1) about the positive equilibrium & =1 is

Ynt1 =0 Yn +0 -y 14+0 - Yno+0-yp3, n=01,....

By virtue of [6, Remark 1.3.7], Z is locally asymptotically stable. It remains to
verify that every positive solution {x,}32 _4 of equation (1) converges to 1 as
n — o0o. Namely, we want to prove
(5) lim z, =% = 1.

n—o0

If the initial values of the solution satisfy (2), then Lemma 1 says the solution
is eventually equal to 1 and of course, (5} holds. Therefore, we assume in the
following that the initial values of the solution do not satisfy (2). Then, by
Remark 2.1 we know, for any solution {z,} of equation (1), z,, # 1 for n > -2
and x, # z,_3 for n > 0.

If the solution is nonoscillatory about the positive equilibrium point Z of
equation (1), then we know from Lemma 2.2 (c) that the solution is actually
an eventually positive one. According to Lemma 2.2 (b), we see that {z3,},
{z3n—1} and {z3,_2} are eventually decreasing and bounded from the below
by the constant 1. So, the limits

lim I3p = L, lim T3n4+1 — M and lim T3n+2 — N
n—oo n—00 n— o0
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exist and are finite. Note

b b b b
o T3, + T3n—2%3,_3+a Taniy = T3p41 T T3n-1T3p,_o T 4

n+l = "% b ) n+2 — T p b
T3nTan—2 + T3, 3+ 0a T3n41Z3n—1 T T3, 2+ @

and

b b
Tanes = T3n42 T T3nT3,_1 + 0
n+3 — b b )
T3n42T3n + T3, T C

take the limits on both sides of the above equalities and obtain

L+ MxL'+a _ M +NxMP+a
T Lbx M4 L +a T MPx N+ Mb+a
_ N°+LxN’+a
 NbxL+4+Nbtq

and

Solve these equations. We get L = M = N = 1, which shows (5) is true.

Thus, it suffices to prove that (5) holds for the solution to be strictly oscil-
latory.

Consider now {z,} to be strictly oscillatory about the positive equilibrium
point Z of equation (1). By virtue of Theorem 3.1, one understands that the
lengths of positive and negative semicycles of the solution periodically succes-
sively occur, and in a period, the ruleis 1*,1—,1%,4—,3+,17,2% 2~.

For simplicity, for some integer p > 0, we denote by {@p, Zp+1, Tp+2, Tp+3}~
the terms of a negative semicycle of length four, followed by {Zp+4, Tp+5, Tp46}"
a positive semicycle with length three, then a negative semicycle {z,17}~ and
a positive semicycle {@pts, Zp+9}™, and so on. Namely, the rule for the lengths
of negative and positive semicycles to occur successively can be periodically
expressed as follows:

{xp+15na Tp4+15n+1y Lp+15n+2; $p+15n+3}—7
{wp+15n+4, Tp4+15n+5, ﬂ3p+15n+6}+, {Ip+15n+7}_, {$p+15n+8, $p+15n+9}+7
{xp+15n+10, xp+15n+11}_, {Svp+15n+12}+, {xp+15n+13}“7 {$p+15n+14}+,

n=01,....
Then the following results can be easily observed:

(1) Tp+15n+3 > Tp4+15n; Tp+16n+16 > Lp+15n+13 > Tp+15n+10 > Tp+15n+7;
Tp+15n+18 = Tp+15n+15;

(ii) Tp+15n+5 > Tp+15n+8; Tp+15n+6 > LTp+15n+9 > Tp+15n+12;

(i) Tpr15n+7Tptisntd > 15 Tpt15n+6Tptisn+s < 1 Tprisnt1s Tpti5n+12
>1;

(iV) Tp+15n+4Zp+15n+1 < 1) Tpr15n45Tpt+isnt2 < 15 Tppisnt11Tpt15n+s >
1;

(V) Tpt15n+14Tp415n+11 < 1; Tprisnt17Tptisn+1a > 1o
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Actually, the inequalities (i) and (ii) are followed straightforward from Lemma
2.2 (b). From the following observations

b b
Lp+15n+6 + Lp+15n+4Zp 4 15n+3 +a

z
p+15n+7 b b
Ty 15n+6Tp+15n+4 T Tpy15p43 T O

b b
Tpt15n+6 + Tp+15n+4Tp115n4+3 T 4

b 2 b
Ty 15n+6Tp+15n+4 T Tpy 15n4+4Tpr15n+7 T OTp+15n+4
1

b
Tp+15n+4

b b
Tpi15n4s T Lp+15n+3Lpy15nt2 T 4

T =
p+15n+6 b b
Tpi15n+5Tp+15n+3 T Tpyisnye T 0

b b
ZTp115n+5Tp+15n+3 T Tpiisne2 T4

b 2 b
Lp+15n+5Tp+15n+3 + Lp+15n+3Lp+15n+2 + ATp+15n+3
1

b
Tp+15n+3
and

b b
Tpi1snt+14 T Tp+15n+128p 4150411 T 0

xT et
p+15n+15 b b
Ty 15n+14Tp+15n+12 + Tpyi5n411 T 0

b b
ZTpti1sn+14a T Tp+15n+1285115n+11 T @
Y4 p

b 2 b
ZTp115n4+14Tp+15n+12 T Tpi15n+12Tp+15n+11 T ATp+15n+12
1

)
Tp415n+12
we see that (iii) is true.
Declarations (iv) and (v) can be deduced easily from

b b
Tpi15n4+3 T Tp+15n+1Tp 1150 + 4

b b
Tyt 15n43Tp+15n+1 + Tpyis, +a

Tp+15n+4 —

b b
Tpy15n+3 T Tp+15n+1Tp115n T 4

b 2 b
Zpi15n+3Lp+15n+1 T Lpi15n+1Zpt15n T Ap+15n+1
1

K
Tp+15n+1

b b
Tpi15nta T Tp+15n+2Zot15n+1 T O

X =
p+15n+5 b b
Zpt15n+4Tp+15n4+2 T Tp 15041 T4

b b
Tp+15n4d T Tp4+15n42Tp 115041 T 4

b 2 b
Tpi15n+4Tp+15n+2 T Tpy15n42%p+15n+1 T OTp+15n+2
1

b
Tp+15n+2
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b b
Zpi15n+10 T Tp+15n+8%p 115047 + @

€T =
p+15n+11 3 3
Tp115n+10%p+15n+8 T Lpy15ni7 T 0

b b
Lp+15n+10 + Lp+15n+8Tp 4 15n+7 +a

b 2 b
mp+15n+10xp+15n+8 + ﬂ’/'p+15n+8xp+15n+7 + aa:p+15n+8
1

)
xp+l5n+8
and

b b
Tpi15n+13 T Lp+15n+118p 1150410 T @

Tp+15n+14 = 3 3
Tp+15n+13Tp+15n+11 + Tpy15n410 T 0

b b
Tpi15n413 T Tp+16n+11Tp 1150411 T @

5 2 b
Tpt+15n+13Tp+15n+11 T Ty 1501118 p 150410 T GLp+15n+11
1

b
Tp4+15n+11

b b
Zpt15n+16 T To+15n+14%p 4150413 T @

€ =
p+15n+17 . .
Tp415n+16Tp+15n+14 + Tpi1sni13 T @

b b
Tpi15n416 T Lp+15n+14Lp 4 15n+13 +a

b 2 b
Tpt15n+16Tp+15n+14 t Tpi15n414%p 1150413 T ALp+15n+14
1
b
Tp+15n+14
respectively.
Now, it follows from (i) - (iii) that

1
Tp4+15n+15 Tp+15n+18"°

1
Tprionss = Tp+15n+6 > Tpi1sn49 > Tptlsnt12 >
(6)
n=0,1,2,...,

which in turn means that {z,+15n43}52, is increasing with upper bound 1. So,
the limit

lim zp 1543 =1L
=00
exists and is finite. Accordingly, by view of (6), we obtain
lim 21150415 =L
n—00

and
. . . 1
lim zpi15n416 = lim ZTp+15n+9 = M Tpiisny1e = —.
n—co n—oo n—0o0 L

Next, combining (i), (iv) and (v), we have

1

1 1
Tp+15n+2

> Tp415n+5 > Tptisnts > Tp4+15n+11

> Tp+1sn+14 > o

n=0,1,2,....
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It is easy to know from (7) that {z,;15n42}5, is increasing with upper
bound 1. Hence, the limit lim,— oo Tpt15n+2 = M exists and is finite. It is
clear from (7) that

lim zpy15n411 = M
n—oo

and
1

nll_{fgo Tpt15n+5 = nllvn;o Tp+15n+8 = nli_{lgo Tp+1snt1a = 77-
Finally, from the second inequality of (i) and the first inequalities of (iii)
and (iv), one may get

Zp+15n+16 >Tp+15n+13 > Tp+15n+10 > Tp+15n+7

(8) 1
> > Tpiisntd, n=012,....
Lp+15n+4

It shows {Zp415n+1}32, increasing with upper bound 1, and hence there is an
N such that the following limits hold:

lim Tp4+165n+1 = lim Lp415n47 = lim Tp+15n+10
n—0o0 n—o0 n—000
= lim Tp4+15n+13 = N and
n—oo
i 1
im z =—.

oo p+15n+4 N

It suffices to verify that L = M = N = 1. To this end, noting

b b
ot 15mt6 Ty 15n45s T Tp+15n+3Tp 15042 T O
p+15n+6 =3 5 ;
Zp i 15n+5Zp+15n+3 T Tpyisniz T @

b b
T _ Tpy15n+7 T Tp+15n+5Tp415nt4 T @
p+15n+8 —Zb o T .'L'b + G,,
p+15n+7p+15n+5 p+15n+4

and
_ 5y 15nro + Tpi15nt78h 4 15016 T O
xp+15’n+10 - % b )
Ty 15n4+9Tp+15n+7 T Tpy1snt6 T a
taking the limits on both sides of the above equalities, we obtain
1 (@) +LxMPta 1 Nt x($)+a
L () xL+Mb+a M  No+Ex(3)P+a
(£’ +Nx (1) +a
(2P XN+ (1)l +a
Solving these equations we can derive L = M = N = 1. Up to now, we have
shown limy, o Tpti5n+k = 1,k =1,2,...,15. So, the proof for Theorem 3.2 is
complete. |

N =

Finally, we present the rule of the trajectory structure of equation (1).
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Theorem 3.3. The rule of the trajectory structure of equation (1) is that all
of its solutions asymptotically approach its equilibrium, furthermore, any one
of its solutions is either

(1) eventually trivial, or

(2) nonoscillatory and eventually positively (i.e., x, > 1); or

(3) strictly oscillatory with the lengths of positive and negative semicycles pe-
riodically successively occurring with prime period 15 and the rule to be 17,17,
1%,4-,3%,17,2% 2~ in @ period.

The proof of Theorem 3.3 follows from Lemma 2.1, Theorem 3.1 and Theo-
rem 3.2 and so is omitted here.
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