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GLOBAL STABILITY OF HIV INFECTION MODELS

WITH INTRACELLULAR DELAYS

Ahmed Elaiw, Ismail Hassanien, and Shimaa Azoz

Abstract. In this paper, we study the global stability of two mathemat-
ical models for human immunodeficiency virus (HIV) infection with intra-
cellular delays. The first model is a 5-dimensional nonlinear delay ODEs

that describes the interaction of the HIV with two classes of target cells,
CD4+ T cells and macrophages taking into account the saturation infec-
tion rate. The second model generalizes the first one by assuming that

the infection rate is given by Beddington-DeAngelis functional response.
Two time delays are used to describe the time periods between viral entry
the two classes of target cells and the production of new virus particles.
Lyapunov functionals are constructed and LaSalle-type theorem for delay

differential equation is used to establish the global asymptotic stability
of the uninfected and infected steady states of the HIV infection models.
We have proven that if the basic reproduction number R0 is less than
unity, then the uninfected steady state is globally asymptotically stable,

and if the infected steady state exists, then it is globally asymptotically
stable for all time delays.

1. Introduction

Modelling, analysis and control of human immunodeficiency virus (HIV)
infection have attracted the interests of mathematicians during the recent years.
Several mathematical models exist and adequately explain the interaction of
the HIV infection and the immune system up to the stage of clinical latency, as
well as viral suppression and immune system recovery after treatment therapy
[18]. Some of these models are given by a system of nonlinear ODEs. These
models are based on the assumption that, once the virus contacts a target cell,
the cell begins producing new virus particles. However in real situation there
is a lag between the time of viral entry a target cell and the time of producing
new virus particles from the same target cell. Therefore, more accurate models
have been proposed which are given by a system of nonlinear delay ODEs to
account the intracellular time delay. The first HIV infection model accounting
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the intracellular time delay which represents the time between viral entry into
a target cell and the production of new virus particles was proposed in 1996 by
Herz et al. [7]. Thereafter, various models using discrete or distributed delays
to model the intracellular phase were developed (see e.g. [2], [9], [10], [11], [12],
[13], [14], [16], [17], [24], [27]). The basic HIV infection model with intracellular
delay can be given in a general form as:

ẋ(t) = f(x(t), x1(t))− g(x(t), v(t)),(1)

ẋ1(t) = e−mτg(x(t− τ), v(t− τ))− ax1(t),(2)

v̇(t) = px1(t)− rv(t),(3)

where x(t), x1(t) and v(t), represent the concentrations of the uninfected CD4+

T cells, infected CD4+ T cells and free virus particles, respectively. The func-
tion f(x, x1) represents the growth rate of the uninfected CD4+ T cells and has
been used in the literature in delayed HIV infection models in different forms:

• Growth rate without proliferation ([9], [11], [12], [14], [16], [17], [24], [27]):

f(x, x1) = λ− dx.

• Growth rate with simple proliferation ([21], [23], [25]):

f(x, x1) = λ− dx+ α

(
1− x

xmax

)
.

• Growth rate with full proliferation ([2], [8]):

f(x, x1) = λ− dx+ α

(
1− x+ x1

xmax

)
.

The function g(x, v) represents the incidence rate infection and it has been
considered in the delayed HIV infection models by different forms:

• Bilinear incidence rate ([7], [8], [12], [14], [16]):

g(x, v) = βxv.

• Saturated incidence rate ([11], [23], [27]):

g(x, v) =
βxv

1 + b1v
.

• Beddington-DeAngelis infection rate ([9], [14], [24]):

g(x, v) =
βxv

1 + a1x+ b1v
.

Parameters λ, d, α, xmax, β, a, p, r, a1 and b1 are positive constants. Here,
λ represents the rate of which new CD4+ T cells are generated from sources
within the body, d is the death rate constant, α is the maximum proliferation
rate of CD4+ T cells, xmax is maximum level of CD4+ T cells concentration
in the body, and β is the rate constant characterizing infection of the cells.
Eq.(2) describes the population dynamics of the infected CD4+ T cells and
shows that they die with rate constant a. The virus particles are produced by
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the infected CD4+ T cells with rate constant p, and are cleared from plasma
with rate constant r. The parameter τ accounts for the time between viral
entry into the CD4+ T cell and the production of new virus particles. The
recruitment of virus producing cells at time t is given by the number of cells
that were newly infected CD4+ T cells at time t− τ and are still alive at time
t. If we assume a constant death rate m for infected CD4+ T cells but not yet
virus-producing cells, the probability of surviving the time period from t − τ
to t is e−mτ .

One extension of the basic delayed model (1)-(3) has been introduced by
taking into account the Cytotoxic T Lymphocytes (CTL) immune response
[15], [21], [22] and [26]. The role of CTL cells is to attack the infected cells.
Another extension includes the addition of antiretroviral drug therapies [28] and
[25]. A great effort has been devoted to study the basic and global properties
of the HIV infection models with delay such as positive invariance properties,
boundedness of the model solutions and stability analysis which are important
for understanding the associated characteristics of the HIV dynamics (see e.g.
[9], [11], [12], [14], [15], [23] and [27]).

All of the above mentioned delayed HIV infection models are mainly mod-
elled the interaction of the HIV with one target cells, CD4+ T cells. Perleson
et al., observed that after the rapid first phase of decay during the initial 1-2
weeks of antiretroviral treatment, plasma virus levels declined at a consider-
ably slower rate [19]. This second phase of viral decay was attributed to the
turnover of a longer-lived virus reservoir of infected cells. These cells are called
macrophages and considered as the second target cell for the HIV. Therefore,
the two target cells model is more accurate than the one target cells model (see
[1] and [20]). Some HIV infection models exist to describe the interaction pro-
cess of the HIV not only with the CD4+ T cells but also with the macrophages
which are the crucial immune responses and play important roles in phagocy-
tosis (see e.g. [1] and [20]). In very recent works ([3], [4] and [5]), we have
proposed several HIV infection models with two target cells and investigated
the global asymptotic stability of their steady states. However the intracellular
time delay is neglected in these papers.

The purpose of the present paper is to study the global stability of two HIV
infection models with two classes of target cells and delays. The first model is
a 5-dimensional nonlinear delayed ODEs that describes the interaction of the
HIV with two target cells, CD4+ T cells and macrophages taking into account
the saturation infection rate. In the second model, the incidence rate is given
by Beddington-DeAngelis functional response. The global stability of these
models is established using Lyapunov functionals, which are similar in nature
to those used in [10] and [27]. By constructing explicit Lyapunov functionals,
we prove that the global dynamics of these models are determined by the basic
reproduction number R0. If R0 ≤ 1, then the uninfected steady state is globally
asymptotically stable (GAS). If the infected steady state exists, then it is GAS
for all time delays.
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1.1. HIV infection model with saturation infection rate

We shall use the mathematical model of HIV infection proposed by ([1] and
[20]), incorporating to take into account the intracellular delays and saturation
infection rate. This model describes two co-circulation populations of target
cells, potentially representing CD4+ T cells and macrophages and given by:

ẋ(t) = λ1 − d1x(t)−
β1x(t)v(t)

1 + v(t)
,(4)

ẋ1(t) = e−m1τ1
β1x(t− τ1)v(t− τ1)

1 + v(t− τ1)
− ax1(t),(5)

ẏ(t) = λ2 − d2y(t)−
β2y(t)v(t)

1 + v(t)
,(6)

ẏ1(t) = e−m2τ2
β2y(t− τ2)v(t− τ2)

1 + v(t− τ2)
− δy1(t),(7)

v̇(t) = p1x1(t) + p2y1(t)− rv(t),(8)

where y and y1 are the concentrations of the uninfected and infected macro-
phages, respectively. The populations of the macrophages are described by
Eq.(6), where λ2 represents the rate of which new macrophages cells are gener-
ated from sources within the body, d2 is the death rate constant, and β2 is the
infection rate constant. In Eq.(7), δ is the death rate constant of the infected
macrophages. The virus particles are produced by the infected CD4+ T cells
and infected macrophages with rate constants p1 and p2, respectively. Here
parameters τ1 and τ2 account for the times between viral entry into CD4+ T
and macrophages cells, respectively, and the production of new virus particles.
Also, m1 and m2 are assumed to be the constant death rates for infected CD4+

T and macrophages cells, respectively, but not yet virus-producing cells. Thus,
the probability of surviving the time period from t− τi to t is e−miτi , i = 1, 2.
The other variables and parameters have the same biological meaning as given
in model (1)-(3). All the parameters of the model are supposed to be positive.

1.2. Initial conditions

The initial conditions for system (4)-(8) take the form
(9)

x(θ) = φ1(θ), x1(θ) = φ2(θ), y(θ) = φ3(θ), y1(θ) = φ4(θ), v(θ) = φ5(θ),

φi(θ) ≥ 0, θ ∈ [−max{τ1, τ2}, 0), φi(0) > 0, i = 1, . . . , 5,

where (φ1(θ), . . . , φ5(θ)) ∈ C([−max{τ1, τ2}, 0],R5
+), C is the Banach space of

continuous functions mapping the interval [−max{τ1, τ2}, 0] into R5
+.

By the fundamental theory of functional differential equations [6], system
(4)-(8) has a unique solution (x(t), x1(t), y(t), y1(t), v(t)) satisfying the initial
conditions (9).



GLOBAL STABILITY OF HIV INFECTION MODELS 783

1.3. Positivity and boundedness

It is easy to show that all solutions of system (4)-(8) with initial conditions
(9) are defined on [0,∞) and remain positive for all t ≥ 0 (see [9] and [12]).

Proposition 1. The solution of (4)-(8) with the initial conditions (9) is ulti-
mately bounded.

Proof. Let X(t) = e−m1τ1x(t− τ1) + x1(t) and Y (t) = e−m2τ2y(t− τ2) + y1(t).
Then

Ẋ(t) ≤ λ1e
−m1τ1 − σ1X(t),

Ẏ (t) ≤ λ2e
−m2τ2 − σ2Y (t),

where σ1 = min{d1, a} and σ2 = min{d2, δ}. Hence lim supt→∞ X(t) ≤ L1,

and lim supt→∞ Y (t) ≤ L2, where L1 = λ1e
−m1τ1

σ1
and L2 = λ2e

−m2τ2

σ2
. On the

other hand,

v̇(t) ≤ p1L1 + p2L2 − rv,

then lim supt→∞ v(t) ≤ L3, where L3 = p1L1+p2L2

r . It follows that the solution
of (4)-(8) is ultimately bounded. □

1.4. Steady states

The dynamics of system (4)-(8) crucially depends on the basic reproduction
number R0 given by

R0 =
e−m1τ1p1β1δx0 + e−m2τ2p2β2ay0

aδr
,

where x0 = λ1

d1
, y0 = λ2

d2
. We note that R0 can be written as:

R0 = R1 +R2,

where

R1 =
e−m1τ1p1β1x0

ar
, R2 =

e−m2τ2p2β2y0
δr

,

are the basic reproduction numbers of each T-cell and macrophages dynamics
separately (see [3], [5]).

It is clear that, system (4)-(8) has an uninfected steady state E0 = (x0, 0, y0,
0, 0). The system can also has a positive infected steady state E1(x

∗, x∗
1, y

∗, y∗1 ,
v∗). The coordinates of the infected steady state, if they exist, satisfy the
equalities:

λ1 = d1x
∗ +

β1x
∗v∗

1 + v∗
, λ2 = d2y

∗ +
β2y

∗v∗

1 + v∗
,

ax∗
1e

m1τ1 =
β1x

∗v∗

1 + v∗
, δy∗1e

m2τ2 =
β2y

∗v∗

1 + v∗
, rv∗ = p1x

∗
1 + p2y

∗
1 .(10)
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1.5. Global stability analysis

In this section, we shall consider the global stability of the uninfected and
infected steady states of (4)-(8) by the Lyapunov direct method. To simplify
the presentation we shall use the following notation: z = z(t), zτi = z(t− τi),
i = 1, 2, for any z ∈ {x, x1, y, y1, v}. We also define a function F : R>0 → R≥0

as
F (z) = z − 1− ln z.

We note that F (z) ≥ 0 for any z > 0 and has the global minimum F (1) = 0.

Theorem 1. (i) If R0 ≤ 1, then E0 is GAS for any τ1, τ2 ≥ 0.
(ii) If E1 exists, then it is GAS for any τ1, τ2 ≥ 0.

Proof. (i) We consider a Lyapunov functional

W1 = x0F

(
x

x0

)
+ em1τ1x1 + γ

[
y0F

(
y

y0

)
+ em2τ2y1

]
+

a

p1
em1τ1v

+

∫ τ1

0

β1x(t− θ)v(t− θ)

1 + v(t− θ)
dθ + γ

∫ τ2

0

β2y(t− θ)v(t− θ)

1 + v(t− θ)
dθ,

where γ = p2a
p1δ

em1τ1

em2τ2
. We note that W1 is defined, continuous and positive

definite for all (x, x1, y, y1, v) > 0 and θ ∈ [0,max{τ1, τ2}]. Also, the global
minimum W1 = 0 occurs at the uninfected steady state E0. Further, function
W1 along the trajectories of (4)-(8) satisfies

dW1

dt
=

(
1− x0

x

)(
λ1 − d1x− β1xv

1 + v

)
+ em1τ1

(
e−m1τ1

β1xτ1vτ1
1 + vτ1

− ax1

)(11)

+ γ

[(
1− y0

y

)(
λ2−d2y−

β2yv

1 + v

)
+em2τ2

(
e−m2τ2

β2yτ2vτ2
1 + vτ2

− δy1

)]
+

a

p1
em1τ1(p1x1 + p2y1 − rv) +

β1xv

1 + v
− β1xτ1vτ1

1 + vτ1

+ γ
β2yv

1 + v
− γ

β2yτ2vτ2
1 + vτ2

= λ1 − d1x− x0

x

(
λ1 − d1x− β1xv

1 + v

)
+ γ

[
λ2 − d2y −

y0
y

(
λ2 − d2y −

β2yv

1 + v

)]
− ar

p1
em1τ1v

= λ1

[
2− x0

x
− x

x0

]
+γλ2

[
2− y0

y
− y

y0

]
+

β1x0v

1 + v
+ γ

β2y0v

1 + v
− ar

p1
em1τ1v

= λ1

[
2− x0

x
− x

x0

]
+γλ2

[
2− y0

y
− y

y0

]
+

arem1τ1v

p1(1 + v)

(
e−m1τ1p1β1x0

ar
+

e−m2τ2p2β2y0
δr

− 1

)
− arem1τ1v2

p1(1 + v)
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= λ1

[
2− x0

x
− x

x0

]
+ γλ2

[
2− y0

y
− y

y0

]
+

arem1τ1v

p1(1 + v)
(R0 − 1)− arem1τ1v2

p1(1 + v)
.

Since the arithmetical mean is greater than or equal to the geometrical mean,
then the first two terms of (11) are less than or equal to zero. Therefore,
if R0 ≤ 1, then dW1

dt ≤ 0 for all x, x1, y, y1, v > 0. By Theorem 5.3.1 in
[6], the solutions of system (4)-(8) limit to M , the largest invariant subset of{

dW1

dt = 0
}
. Clearly, it follows from (11) that dW1

dt = 0 if and only if x = x0,
y = y0, v = 0. Each element of M satisfies x = x0, y = y0, v = 0 for all t, then
v̇ = 0. From Eq.(8) we drive that

0 = v̇ = p1x1 + p2y1.

Since x1, y1 ≥ 0, then p1x1 + p2y1 = 0 if and only if x1 = y1 = 0. Hence
dW1

dt = 0 if and only if x = x0, y = y0, x1 = y1 = v = 0. From LaSalle’s
Invariance Principle, E0 is GAS for any τ1, τ2 ≥ 0.

(ii) Define a Lyapunov functional

W2 = x∗F
( x

x∗

)
+ em1τ1x∗

1F

(
x1

x∗
1

)
+ γ

(
y∗F

(
y

y∗

)
+ em2τ2y∗1F

(
y1
y∗1

))

+
a

p1
em1τ1v∗F

( v

v∗

)
+

β1x
∗v∗

1 + v∗

τ1∫
0

F

(
x(t− θ)v(t− θ)(1 + v∗)

x∗v∗(1 + v(t− θ))

)
dθ

+ γ
β2y

∗v∗

1 + v∗

τ2∫
0

F

(
y(t− θ)v(t− θ)(1 + v∗)

y∗v∗(1 + v(t− θ))

)
dθ.

It is easy to see that W2 ≥ 0 and W2 = 0 if and only if (x, x1, y, y1, v) take
the steady state value (x∗, x∗

1, y
∗, y∗1 , v

∗) and x(t − θ) = x∗, y(t − θ) = y∗,
v(t− θ) = v∗ for all θ ∈ [0,max{τ1, τ2}].

Differentiating with respect to time yields

dW2

dt

=

(
1− x∗

x

)(
λ1 − d1x− β1xv

1 + v

)
+ em1τ1

(
1− x∗

1

x1

)(
e−m1τ1

β1xτ1vτ1
1 + vτ1

− ax1

)
+γ

[(
1− y∗

y

)(
λ2−d2y−

β2yv

1 + v

)
+em2τ2

(
1− y∗1

y1

)(
e−m2τ2

β2yτ2vτ2
1 + vτ2

−δy1

)]
+

a

p1
em1τ1

(
1− v∗

v

)
(p1x1 + p2y1 − rv) +

β1xv

1 + v
− β1xτ1vτ1

1 + vτ1

+
β1x

∗v∗

1 + v∗
ln

(
xτ1vτ1(1 + v)

xv(1 + vτ1)

)
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+γ

[
β2yv

1 + v
− β2yτ2vτ2

1 + vτ2
+

β2y
∗v∗

1 + v∗
ln

(
yτ2vτ2(1 + v)

yv(1 + vτ2)

)]
.

Using the infected steady state conditions (10) and the following equality
ar

p1
em1τ1v =

ar

p1
em1τ1v∗

v

v∗

=
a

p1
em1τ1 (p1x

∗
1 + p2y

∗
1)

v

v∗

= ax∗
1e

m1τ1
v

v∗
+ γδy∗1e

m2τ2
v

v∗
,

we obtain
dW2

dt
= d1x

∗ − d1x− x∗

x
(d1x

∗ + ax∗
1e

m1τ1 − d1x) +
β1x

∗v

1 + v
− x∗

1

x1

β1xτ1vτ1
1 + vτ1

+ 3ax∗
1e

m1τ1 − ax∗
1e

m1τ1
v

v∗
− ax∗

1e
m1τ1

v∗x1

vx∗
1

+ γ

[
d2y

∗ − d2y −
y∗

y
(d2y

∗ + δy∗1e
m2τ2 − d2y)

]
+ γ

[
β2y

∗v

1 + v
− y∗1
y1

β2yτ2vτ2
1 + vτ2

+3δy∗1e
m2τ2−δy∗1e

m2τ2
v

v∗
−δy∗1e

m2τ2
v∗y1
vy∗1

]
+ ax∗

1e
m1τ1 ln

(
xτ1vτ1(1 + v)

xv(1 + vτ1)

)
+ γδy∗1e

m2τ2 ln

(
yτ2vτ2(1 + v)

yv(1 + vτ2)

)
= d1x

∗
(
2− x

x∗ − x∗

x

)
− ax∗

1e
m1τ1

x∗

x
+ ax∗

1e
m1τ1

v

v∗
(1 + v∗)

(1 + v)

− ax∗
1e

m1τ1
x∗
1xτ1vτ1(1 + v∗)

x1x∗v∗(1 + vτ1)
+ 3ax∗

1e
m1τ1 − ax∗

1e
m1τ1

v

v∗

− ax∗
1e

m1τ1
v∗x1

vx∗
1

+ ax∗
1e

m1τ1 ln

(
xτ1vτ1(1 + v)

xv(1 + vτ1)

)
+ γ

[
d2y

∗
(
2− y

y∗
− y∗

y

)
− δy∗1e

m2τ2
y∗

y
+ δy∗1e

m2τ2
v

v∗
(1 + v∗)

(1 + v)

−δy∗1e
m2τ2

y∗1yτ2vτ2(1 + v∗)

y1y∗v∗(1 + vτ2)
+ 3δy∗1e

m2τ2 − δy∗1e
m2τ2

v

v∗

−δy∗1e
m2τ2

v∗y1
vy∗1

+ δy∗1e
m2τ2 ln

(
yτ2vτ2(1 + v)

yv(1 + vτ2)

)]
,

and using also the following equalities

ln

(
xτ1vτ1(1 + v)

xv(1 + vτ1)

)
= ln

(
x∗

x

)
+ ln

(
x1v

∗

x∗
1v

)
+ ln

(
x∗
1xτ1vτ1(1 + v∗)

x1x∗v∗(1 + vτ1)

)
+ ln

(
1 + v

1 + v∗

)
,

ln

(
yτ2vτ2(1 + v)

yv(1 + vτ2)

)
= ln

(
y∗

y

)
+ ln

(
y1v

∗

y∗1v

)
+ ln

(
y∗1yτ2vτ2(1 + v∗)

y1y∗v∗(1 + vτ2)

)
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+ ln

(
1 + v

1 + v∗

)
,

−1− v

v∗
+

v

v∗
(1 + v∗)

(1 + v)
+

1 + v

1 + v∗
= − (v − v∗)2

v∗(1 + v)(1 + v∗)
,

we get

dW2

dt
= d1x

∗
(
2− x

x∗ − x∗

x

)
+ γd2y

∗
(
2− y

y∗
− y∗

y

)
(12)

− ax∗
1e

m1τ1

[
F

(
x∗

x

)
+ F

(
x1v

∗

x∗
1v

)
+ F

(
1 + v

1 + v∗

)
+F

(
x∗
1xτ1vτ1(1 + v∗)

x1x∗v∗(1 + vτ1)

)
+

(v − v∗)2

v∗(1 + v)(1 + v∗)

]
− γδy∗1e

m2τ2

[
F

(
y∗

y

)
+ F

(
y1v

∗

y∗1v

)
+ F

(
1 + v

1 + v∗

)
+F

(
y∗1yτ2vτ2(1 + v∗)

y1y∗v∗(1 + vτ2)

)
+

(v − v∗)2

v∗(1 + v)(1 + v∗)

]
.

Since the arithmetical mean is greater than or equal to the geometrical mean,
then the first two terms of (12) are less than or equal to zero. It is easy to see
that if x∗, x∗

1, y
∗, y∗1 , v

∗ > 0, then dW2

dt ≤ 0. By Theorem 5.3.1 in [6], the solu-

tions of system (4)-(8) limit to M , the largest invariant subset of
{

dW2

dt = 0
}
.

It can be seen that dW2

dt = 0 if and only if x = x∗, y = y∗, v = v∗, and F = 0
i.e.,

(13)
x1v

∗

x∗
1v

=
y1v

∗

y∗1v
=

x∗
1xτ1vτ1(1 + v∗)

x1x∗v∗(1 + vτ1)
=

y∗1yτ2vτ2(1 + v∗)

y1y∗v∗(1 + vτ2)
= 1.

If v = v∗, then from (13) we have x1 = x∗
1 and y1 = y∗1 . LaSalle’s Invariance

Principle implies global stability of E1. □

2. HIV infection model with Beddington-DeAngelis functional
response

In this section we study the global stability of HIV infection model with
two target cells and delays by assuming that the infection rate is given by the
Beddington-DeAngelis functional response:

ẋ(t) = λ1 − d1x(t)−
β1x(t)v(t)

1 + a1x(t) + b1v(t)
,(14)

ẋ1(t) = e−m1τ1
β1x(t− τ1)v(t− τ1)

1 + a1x(t− τ1) + b1v(t− τ1)
− ax1(t),(15)

ẏ(t) = λ2 − d2y(t)−
β2y(t)v(t)

1 + a2y(t) + b2v(t)
,(16)

ẏ1(t) = e−m2τ2
β2y(t− τ2)v(t− τ2)

1 + a2y(t− τ2) + b2v(t− τ2)
− δy1(t),(17)



788 A. M. ELAIW, I. A. HASSANIEN, AND S. A. AZOZ

v̇(t) = p1x1(t) + p2y1(t)− rv(t).(18)

Here β1xv
1+a1x+b1v

and β2yv
1+a2y+b2v

, represent the Beddington-DeAngelis functional

response of the CD4+ T cells and macrophages, respectively, where a1, b1, a2, b2
are positive constants. All the variables and parameters of the model have the
same definitions as given in the previous section. This model can be considered
as an extension of the model given in [9], [14] which describes the interaction
of the HIV with one target cells, CD4+ T cells.

2.1. Steady states

It is clear that, system (14)-(18) has an uninfected steady state E0 =
(x0, 0, y0, 0, 0), where x0 = λ1

d1
, y0 = λ2

d2
. The system can also has a posi-

tive infected steady state E1(x
∗, x∗

1, y
∗, y∗1 , v

∗). The coordinates of the infected
steady state, if they exist, satisfy the equalities:

λ1 = d1x
∗ +

β1x
∗v∗

1 + a1x∗ + b1v∗
,(19)

λ2 = d2y
∗ +

β2y
∗v∗

1 + a2y∗ + b2v∗
,(20)

ax∗
1e

m1τ1 =
β1x

∗v∗

1 + a1x∗ + b1v∗
,(21)

δy∗1e
m2τ2 =

β2y
∗v∗

1 + a2y∗ + b2v∗
,(22)

rv∗ = p1x
∗
1 + p2y

∗
1 .(23)

The basic reproduction number R0 for system (14)-(18) is given by:

R0 =
e−m1τ1p1β1x0δ (1 + a2y0) + e−m2τ2p2β2y0a (1 + a1x0)

aδr (1 + a1x0) (1 + a2y0)
.

We note that R0 can be written as:

R0 = R1 +R2,

where

R1 =
e−m1τ1p1β1x0

ar (1 + a1x0)
, R2 =

e−m2τ2p2β2y0
δr (1 + a2y0)

.

2.2. Global stability analysis

In this section, we prove the global stability of the uninfected and infected
steady states of system (14)-(18).

Theorem 2. (i) If R0 ≤ 1, then E0 is GAS for any τ1, τ2 ≥ 0.
(ii) If E1 exists, then it is GAS for any τ1, τ2 ≥ 0.

Proof. We consider a Lyapunov functional

W1 =
x0

1 + a1x0
F

(
x

x0

)
+ em1τ1x1 + γ

y0
1 + a2y0

F

(
y

y0

)
+ γem2τ2y1
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+
a

p1
em1τ1v +

∫ τ1

0

β1x(t− θ)v(t− θ)

1 + a1x(t− θ) + b1v(t− θ)
dθ

+ γ

∫ τ2

0

β2y(t− θ)v(t− θ)

1 + a2y(t− θ) + b2v(t− θ)
dθ.

We note that W1 is defined, continuous and positive definite for all (x, x1, y, y1,
v) > 0. Also, the global minimum W1 = 0 occurs at the uninfected steady
state E0. The time derivative of W1 along the solution of (14)-(18) is given by

dW1

dt
=

1

1 + a1x0

(
1− x0

x

)(
λ1 − d1x− β1xv

1 + a1x+ b1v

)
+

β1xτ1vτ1
1 + a1xτ1 + b1vτ1

− aem1τ1x1 + γ

[
1

(1 + a2y0)

(
1− y0

y

)(
λ2 − d2y −

β2yv

1 + a2y + b2v

)
+

β2yτ2vτ2
1 + a2yτ2 + b2vτ2

− δem2τ2y1

]
+

a

p1
em1τ1 (p1x1 + p2y1 − rv)

+
β1xv

1 + a1x+ b1v
− β1xτ1vτ1

1 + a1xτ1 + b1vτ1
+ γ

β2yv

1 + a2y + b2v

− γ
β2yτ2vτ2

1 + a2yτ2 + b2vτ2

=
λ1

1 + a1x0

[
2− x

x0
− x0

x

]
+ γ

λ2

(1 + a2y0)

[
2− y

y0
− y0

y

]
− 1

(1 + a1x0)

β1xv

(1 + a1x+ b1v)
+

1

(1 + a1x0)

β1x0v

(1 + a1x+ b1v)

+
β1xv

1 + a1x+ b1v
− ar

2p1
em1τ1v + γ

[
− 1

(1 + a2y0)

β2yv

(1 + a2y + b2v)

+
1

(1 + a2y0)

β2y0v

(1 + a2y + b2v)
+

β2yv

1 + a2y + b2v
− δr

2p2
em2τ2v

]
=

λ1

1 + a1x0

[
2− x

x0
− x0

x

]
+ γ

λ2

(1 + a2y0)

[
2− y

y0
− y0

y

]
+

arem1τ1v (1 + a1x)

p1 (1 + a1x+ b1v)

(
R1 −

1

2

)
− arb1e

m1τ1v2

2p1 (1 + a1x+ b1v)

+
arem1τ1v (1 + a2y)

p1 (1 + a2y + b2v)

(
R2 −

1

2

)
− arb2e

m1τ1v2

2p1 (1 + a2y + b2v)
,

dW1

dt
=

λ1

1 + a1x0

[
2− x

x0
− x0

x

]
+ γ

λ2

(1 + a2y0)

[
2− y

y0
− y0

y

]
(24)

+
arem1τ1v (1 + a1x) (1 + a2y)

p1 (1 + a1x+ b1v) (1 + a2y + b2v)
(R0 − 1)

+
arb2e

m1τ1v2 (1 + a1x)

p1 (1 + a1x+ b1v) (1 + a2y + b2v)
(R1 − 1)
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+
arb1e

m1τ1v2 (1 + a2y)

p1 (1 + a1x+ b1v) (1 + a2y + b2v)
(R2 − 1)

− arb1b2e
m1τ1v3

p1 (1 + a1x+ b1v) (1 + a2y + b2v)
.

Since the arithmetical mean is greater than or equal to the geometrical mean,
then the first two terms of (24) are less than or equal to zero. Therefore, if
R0 ≤ 1, then R1, R2 ≤ 1 and dW1

dt ≤ 0 for all x, x1, y, y1, v > 0. The global
stability of E0 follows from LaSalle’s Invariance Principle.

(ii) Define a Lyapunov functional

W2 = x− x∗ −
∫ x

x∗

x∗ (1 + a1η + b1v
∗)

η (1 + a1x∗ + b1v∗)
dη + em1τ1x∗

1F

(
x1

x∗
1

)
+ γ

(
y − y∗ −

∫ y

y∗

y∗ (1 + a2η + b2v
∗)

η (1 + a2y∗ + b2v∗)
dη + em2τ2y∗1F

(
y1
y∗1

))
+

a

p1
em1τ1v∗F

( v

v∗

)
+

β1x
∗v∗

1 + a1x∗ + b1v∗

∫ τ1

0

F

(
x(t− θ)v(t− θ)(1 + a1x

∗ + b1v
∗)

x∗v∗(1 + a1x(t− θ) + b1v(t− θ))

)
dθ

+ γ
β2y

∗v∗

1 + a2y∗ + b2v∗

∫ τ2

0

F

(
y(t− θ)v(t− θ)(1 + a2y

∗ + b2v
∗)

y∗v∗(1 + a2y(t− θ) + b2v(t− θ))

)
dθ.

Differentiating with respect to time yields

dW2

dt
=

(
1− x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

)(
λ1 − d1x− β1xv

1 + a1x+ b1v

)
+ em1τ1

(
1− x∗

1

x1

)(
e−m1τ1β1xτ1vτ1
1 + a1xτ1 + b1vτ1

− ax1

)
+ γ

[(
1− y∗

y

1 + a2y + b2v
∗

1 + a2y∗ + b2v∗

)(
λ2 − d2y −

β2yv

1 + a2y + b2v

)
+em2τ2

(
1− y∗1

y1

)(
e−m2τ2β2yτ2vτ2
1 + a2yτ2 + b2vτ2

− δy1

)]
+

a

p1
em1τ1

(
1− v∗

v

)
(p1x1 + p2y1 − rv) +

β1xv

1 + a1x+ b1v

− β1xτ1vτ1
1 + a1xτ1 + b1vτ1

+
β1x

∗v∗

1 + a1x∗ + b1v∗
ln

(
xτ1vτ1(1 + a1x+ b1v)

xv(1 + a1xτ1 + b1vτ1)

)
+ γ

β2yv

1 + a2y + b2v
− γ

β2yτ2vτ2
1 + a2yτ2 + b2vτ2

+ γ
β2y

∗v∗

1 + a2y∗ + b2v∗
ln

(
yτ2vτ2(1 + a2y + b2v)

yv(1 + a2yτ2 + b2vτ2)

)
.
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Using the infected steady state E1 conditions (19)-(23) we obtain

dW2

dt
=

(
1− x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

)
(d1x

∗ − d1x)

− ax∗
1e

m1τ1
x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

+ 3ax∗
1e

m1τ1 + ax∗
1e

m1τ1
v

v∗
1 + a1x+ b1v

∗

1 + a1x+ b1v

− ax∗
1e

m1τ1
x∗
1xτ1vτ1(1 + a1x

∗ + b1v
∗)

x1x∗v∗(1 + a1xτ1 + b1vτ1)

− ax∗
1e

m1τ1
v

v∗
− ax∗

1e
m1τ1

v∗x1

vx∗
1

+ ax∗
1e

m1τ1 ln

(
xτ1vτ1(1 + a1x+ b1v)

xv(1 + a1xτ1 + b1vτ1)

)
+ γ

[(
1− y∗

y

1 + a2y + b2v
∗

1 + a2y∗ + b2v∗

)
(d2y

∗ − d2y
∗)

−δy∗1e
m2τ2

y∗

y

1 + a2y + b2v
∗

1 + a2y∗ + b2v∗
+ 3δy∗1e

m2τ2

+ δy∗1e
m2τ2

v

v∗
1 + a2y + b2v

∗

1 + a2y + b2v

− δy∗1e
m2τ2

y∗1yτ2vτ2(1 + a2y
∗ + b2v

∗)

y1y∗v∗(1 + a2yτ2 + b2vτ2)

−δy∗1e
m2τ2

v

v∗
− δy∗1e

m2τ2
v∗y1
vy∗1

+γδy∗1e
m2τ2 ln

(
yτ2vτ2(1 + a2y + b2v)

yv(1 + a2yτ2 + b2vτ2)

)]
.

By a straightforward calculations we get for x:(
1− x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

)
(d1x

∗ − d1x) = −d1 (x− x∗)
2
(1 + b1v

∗)

x (1 + a1x∗ + b1v∗)
,

− 1 +
v

v∗
1 + a1x+ b1v

∗

1 + a1x+ b1v
− v

v∗
+

1 + a1x+ b1v

1 + a1x+ b1v∗

= − b1 (1 + a1x) (v − v∗)
2

v∗ (1 + a1x+ b1v) (1 + a1x+ b1v∗)
,

ln

(
xτ1vτ1(1 + a1x+ b1v)

xv(1 + a1xτ1 + b1vτ1)

)
= ln

(
x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

)
+ ln

(
x1v

∗

x∗
1v

)
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+ ln

(
1 + a1x+ b1v

1 + a1x+ b1v∗

)
+ ln

(
x∗
1xτ1vτ1(1 + a1x

∗ + b1v
∗)

x1x∗v∗(1 + a1xτ1 + b1vτ1)

)
.

Similar equalities can be deduced for y. Then, dW2

dt can be written as:

dW2

dt
= − d1 (x− x∗)

2
(1 + b1v

∗)

x (1 + a1x∗ + b1v∗)

− ax∗
1e

m1τ1
b1 (1 + a1x) (v − v∗)

2

v∗ (1 + a1x+ b1v) (1 + a1x+ b1v∗)

− γd2 (y − y∗)
2
(1 + b2v

∗)

y (1 + a2y∗ + b2v∗)

− δy∗1e
m2τ2

γb2 (1 + a2y) (v − v∗)
2

v∗ (1 + a2y + b2v) (1 + a2y + b2v∗)

− ax∗
1e

m1τ1

[
F

(
x∗

x

1 + a1x+ b1v
∗

1 + a1x∗ + b1v∗

)
+ F

(
x1v

∗

x∗
1v

)
+F

(
1 + a1x+ b1v

1 + a1x+ b1v∗

)
+ F

(
x∗
1xτ1vτ1(1 + a1x

∗ + b1v
∗)

x1x∗v∗(1 + a1xτ1 + b1vτ1)

)]
− δy∗1e

m2τ2γ

[
F

(
y∗

y

1 + a2y + b2v
∗

1 + a2y∗ + b2v∗

)
+ F

(
y1v

∗

y∗1v

)
+F

(
1 + a2y + b2v

1 + a2y + b2v∗

)
+ F

(
y∗1yτ2vτ2(1 + a2y

∗ + b2v
∗)

y1y∗v∗(1 + a2yτ2 + b2vτ2)

)]
.

It is easy to see that if x∗, x∗
1, y

∗, y∗1 , v
∗ > 0, then dW2

dt ≤ 0 for all (x, x1, y, y1, v)
> 0 where the equality holds if and only if (x, x1, y, y1, v) take the steady state
value (x∗, x∗

1, y
∗, y∗1 , v

∗). LaSalle’s Invariance Principle implies global stability
of E1. □

3. Conclusion

In this paper, we have studied the global stability of two HIV infection
models with intracellular delays accounting for the times between viral entry
into the target cells, the CD4+ T and macrophages, and the production of
new virus particles. The first model takes into account the saturation infection
rate. In the second model the infection rate is given by Beddington-DeAngelis
functional response. The global stability of the uninfected and infected steady
states have been established by using suitable Lyapunov functionals and LaSalle
Invariant Principle. We have proven that, if the basic reproduction number R0

is less than unity, then the uninfected steady state is GAS and if the infected
steady state exists then it is GAS for all time delays.
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