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ABSTRACT. In this work, we investigate the global stability analysis of a viral infection model
with antibody immune response. The incidence rate is given by a general function of the popu-
lations of the uninfected target cells, infected cells and free viruses. The model has been incor-
porated with two types of intracellular distributed time delays to describe the time required for
viral contacting an uninfected cell and releasing new infectious viruses. We have established
a set of conditions on the general incidence rate function and determined two threshold pa-
rameters R0 (the basic infection reproduction number) and R1 (the antibody immune response
activation number) which are sufficient to determine the global dynamics of the model. The
global asymptotic stability of the equilibria of the model has been proven by using Lyapunov
theory and applying LaSalle’s invariance principle.

1. INTRODUCTION

In recent past, many mathematicians have been presented and developed mathematical mod-
els in order to describe the interaction between the uninfected cells and the viruses such as
human immunodeficiency virus (HIV) (see e.g. [1]-[22]), hepatitis B virus (HBV) [23]-[26],
hepatitis C virus (HCV) [27]-[29], human T cell leukemia HTLV [30] and dengue virus [31],
etc. Mathematical models of viral infection can help for understanding the viral dynamics and
developing antiviral drug therapies. The immune system has two main responses to viral infec-
tions. The first is based on the Cytotoxic T Lymphocyte (CTL) cells which are responsible to
attack and kill the infected cells. The second immune response is based on the antibodies that
are produced by the B cells. The function of the antibodies is to attack the viruses [4]. In some
infections such as in malaria, the CTL immune response is less effective than the antibody
immune response [32]. In the literature, several mathematical models have been appeared to
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consider the antibody immune response into the viral infection models ([33]-[39]). The basic
model of viral infection with antibody immune response has been introduced by Murase et. al.
[33] and Shifi Wang [39] as:

ẋ(t) = s− dx(t)− βv(t)x(t), (1.1)

ẏ(t) = βv(t)x(t)− ay(t), (1.2)

v̇(t) = ky(t)− bz(t)v(t)− cv(t), (1.3)

ż(t) = rz(t)v(t)− µz(t), (1.4)

where x(t), y(t), v(t) and z(t) denote the populations of uninfected target cells, infected cells,
free virus particles and antibody immune cells at time t, respectively. Parameters s, k and r
represent, respectively, the rate at which new healthy cells are generated from the source within
the body, the generation rate constant of free viruses produced from the infected cells and the
proliferation rate constant of antibody immune cells. Parameters d, a, c and µ are the natural
death rate constants of the uninfected cells, infected cells, free virus particles and antibody
immune cells, respectively. Parameter β is the infection rate constant and b is the removal rate
constant of the virus due to the antibodies. All the parameters given in model (1.1)-(1.4) are
positive.

In model (1.1)-(1.4), the intracellular time delays in the viral life cycle is neglected. Actu-
ally, there is a delay between the virus contact a target cell and the creation of new infectious
viruses. When the time delay is considered, the interaction between the viruses and target cells
will be modeled by delay differential equations [11]-[20]. We note that, the incidence rate of
infection is based on the mass action principle which can not be completely describe the in-
teraction between the uninfected target cells and viruses. Nevertheless, there are many types
of improved incidence rates which are more commonly used due to their benefit for helping
us gain the unification theory through passing over the unessential details (see e.g. [40] and
[41]). Different forms of the incidence rate have been considered in viral infection models
with antibody immune response such as saturated incidence rate, βxv

1+αv where α ≥ 0 [42],
[37], Beddington-DeAngelis functional response, βxv

1+γx+αv , α, γ ≥ 0 [36], and general form,
ψ(x, v)v [38]. In [38], a discrete time delay has been incorporated within the model. However,
the infection rate does not depend on the infected cells y. In some viral infections such as
HBV, the infection rate depends on x, y and v [25], [24]. In [43]-[46], a viral infection model
with general incidence rate ψ(x, y, v)v and discrete time delays has been studied, however the
antibody immune response has been neglected.

Our aim in this paper is to investigate the global stability analysis of a viral infection model
with antibody immune response taking into consideration two types of distributed time delays.
We assume that the incidence rate is given by a general function which satisfies a set of condi-
tions. Two threshold parameters will be derived, the basic infection reproduction number R0

and the antibody immune response activation number R1. We will show that, under a set of
conditions of the incidence rate function and on the parameters R0 and R1, the global stability
of equilibria of the model can be established.
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2. THE MATHEMATICAL MODEL

In this section, we consider the following viral infection model with general incidence rate
taking into consideration the antibody immune response and two types of intracellular dis-
tributed delays.

ẋ(t) = s− dx(t)− ψ(x(t), y(t), v(t))v(t), (2.1)

ẏ(t) =

h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ − ay(t), (2.2)

v̇(t) = Na

h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ − bz(t)v(t)− cv(t), (2.3)

ż(t) = rz(t)v(t)− µz(t), (2.4)

where N is the average number of virus particles generated in the lifetime of the infected cell.
We assume that, the virus contacts an uninfected target cell at time t − τ, the cell becomes
infected at time t, where τ is linked to a probability distribution ρ1(τ) over the time interval
[0, h1] and h1 is limit superior of this delay period. The term e−µ1τ represents the probability of
surviving the contacted cell during the time delay interval, where µ1 is the death rate constant
of the contacted cells. In addition, we assume that, a cell infected at time t − τ starts to
generate new infectious viruses at time t, where τ is linked to a probability distribution ρ2(τ)
over the time interval [0, h2] and h2 is limit superior of this delay. The term e−µ2τ denotes the
probability of surviving the infected cell during the time delay interval, where µ2 is a constant.
The definitions of all variables and parameters are identical to those given in Section 1. The
incidence rate of infection is presented by a general function in the form ψ(x, y, v)v, where ψ
is continuously differentiable and satisfies the following assumptions:

Assumption A1. ψ(0, y, v) = 0 for all y, v ≥ 0, ψ(x, y, v) > 0 for all x > 0, y ≥ 0, v ≥ 0.

Assumption A2.
∂ψ(x, y, v)

∂x
> 0 for all x > 0, y ≥ 0 and v ≥ 0.

Assumption A3.
∂ψ(x, y, v)

∂y
< 0,

∂ψ(x, y, v)

∂v
< 0 for all x, y,v > 0.

Assumption A4.
∂ (ψ(x, y, v)v)

∂v
> 0 for all x > 0, y > 0 and v > 0.

Let us assume that the probability distribution functions ρ1(τ) and ρ2(τ) satisfy ρ1(τ) > 0
and ρ2(τ) > 0, and

h1∫
0

ρ1(τ)dτ =

h2∫
0

ρ2(τ)dτ = 1,

h1∫
0

ρ1(u)e
ℓudu <∞,

h2∫
0

ρ2(u)e
ℓudu <∞,
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where ℓ > 0. Let us denote:

F =

h1∫
0

ρ1(τ)e
−µ1τdτ, G =

h2∫
0

ρ2(τ)e
−µ2τdτ .

Thus
0 < F ≤ 1, 0 < G ≤ 1.

Let the initial conditions for system (2.1)-(2.4) be given as:

x(η) = ζ1(η), y(η) = ζ2(η), v(η) = ζ3(η), z(η) = ζ4(η),

ζj(η) ≥ 0, η ∈ [−ω, 0), j = 1, ..., 4,

ζj(0) > 0, j = 1, ..., 4, (2.5)

where ω = max{h1, h2}, (ζ1(η), ζ2(η), ζ3(η), ζ4(η)) ∈ C([−ω, 0],R4
≥0). We denote by C =

C([−ω, 0],R4
≥0) the Banach space of continuous functions mapping the interval [−ω, 0] into

R4
≥0; with norm ∥ζ∥ = sup

−ω≤η≤0
|ζ(η)| for ζ ∈ C. We note that the system (2.1)-(2.4) with

initial states (2.5) has a unique solution [47].

3. NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTIONS

In this section, we show that the solutions of (2.1)-(2.4) with initial states (2.5) are non-
negative and bounded.

Proposition 3.1. Assume that Assumption A1 is satisfied. Then all solutions of (2.1)-(2.4) with
initial conditions (2.5), are non-negative and ultimately bounded.

Proof. The solution (x(t), y(t), v(t), z(t)) of system (2.1)-(2.4) with initial states (2.5) exists
and is unique on its maximal interval of existence [0, γ] for some γ > 0 [47]. We see that
x(t) > 0 for all t ∈ [0, γ]. Indeed this follows from equation (2.1) that ẋ |x=0= s > 0, for any
t ∈ [0, γ]. Now from Eqs. (2.2)-(2.4) we get

y(t) = y(0)e−at +

t∫
0

e−a(t−η)
h1∫
0

ρ1(τ)e
−µ1τψ(x(η − τ), y(η − τ), v(η − τ))v(η − τ)dτdη,

v(t) = v(0)e−
∫ t
0 (c+bz(ξ))dξ +Na

t∫
0

e−
∫ t
η (c+bz(ξ))dξ

h2∫
0

ρ2(τ)e
−µ2τy(η − τ)dτdη,

z(t) = z(0)e−
∫ t
0 (µ−rv(ξ))dξ,

which yield y(t), v(t), z(t) ≥ 0 for all t ∈ [0, ω]. By a recursive argument, we get that
y(t), v(t), z(t) ≥ 0 for all t ≥ 0.
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Next we prove the ultimate bound of the solutions of system (2.1)-(2.4). From equation (2.1)

we get ẋ(t) ≤ s − dx(t) and thus lim supt→∞ x(t) ≤ s
d . Let T1(t) =

h1∫
0

ρ1(τ)e
−µ1τx(t −

τ)dτ + y(t), then

Ṫ1(t) =

h1∫
0

ρ1(τ)e
−µ1τ (s− dx(t− τ)− ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)) dτ

+

h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ − ay(t)

= s

h1∫
0

ρ1(τ)e
−µ1τdτ − d

h1∫
0

ρ1(τ)e
−µ1τx(t− τ)dτ − ay(t)

≤ s

h1∫
0

ρ1(τ)e
−µ1τdτ − σ1

 h1∫
0

ρ1(τ)e
−µ1τx(t− τ)dτ + y(t)


= s

h1∫
0

ρ1(τ)e
−µ1τdτ − σ1T1(t) ≤ s− σ1T1(t),

where σ1 = min{d, a}. Hence lim supt→∞ T1(t) ≤ L1, whereL1 =
s

σ1
. Since

h1∫
0

ρ1(τ)e
−µ1τx(t−

τ)dτ > 0 and y(t) ≥ 0, then lim supt→∞ y(t) ≤ L1. Moreover, let T2(t) = v(t) + b
rz(t),

Ṫ2(t) = Na

h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ − cv(t)− bµ

r
z(t)

≤ NaL1

h2∫
0

ρ2(τ)e
−µ2τdτ − σ2(v(t) +

b

r
z(t))

= NaL1

h2∫
0

ρ2(τ)e
−µ2τdτ − σ2T2(t) ≤ NaL1 − σ2T2(t),

where σ2 = min{c, µ}. It follows that, lim supt→∞ T2(t) ≤ L2, where L2 =
NaL1

σ2
. Since

v(t) and z(t) are non-negative, lim supt→∞ v(t) ≤ L2 and lim supt→∞ z(t) ≤ L3, where
L3 =

r
bL2. Therefore, all the state variables of the system are ultimately bounded. �
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4. THE EQUILIBRIA AND THRESHOLD PARAMETERS

At any equilibrium we have

s− dx− ψ(x, y, v)v = 0, (4.1)

Fψ(x, y, v)v − ay = 0, (4.2)
NaGy − bzv − cv = 0, (4.3)

(rv − µ) z = 0. (4.4)

From equation (4.4), either z = 0 or z ̸= 0. If z = 0, then from Eqs. (4.1)-(4.3) we get

y =
F (s− dx)

a
=

c

NaG
v, v =

NFG(s− dx)

c
. (4.5)

Substituting from equation (4.5) into equation (4.2) we get:[
ψ

(
x,
F (s− dx)

a
,
NFG(s− dx)

c

)
− c

NFG

]
v = 0. (4.6)

equation (4.6) has two possible solutions v = 0 or v ̸= 0. If v = 0, then from Eqs. (4.1) and
(4.2), we get x = s/d and y = 0 which leads to the infection-free equilibrium E0(x0, 0, 0, 0)
where x0 = s/d. If v ̸= 0, then we have

ψ

(
x,
F (s− dx)

a
,
NFG(s− dx)

c

)
− c

NFG
= 0.

Let

Φ1 (x) = ψ

(
x,
F (s− dx)

a
,
NFG(s− dx)

c

)
− c

NFG
= 0,

then, we have

Φ′
1 (x) =

∂ψ

∂x
− Fd

a

∂ψ

∂y
− NFGd

c

∂ψ

∂v
.

Because of Assumptions A2 and A3, we have Φ′
1 (x) > 0 which implies that function Φ1(x)

is strictly increasing function of x. Moreover,

Φ1(0) = ψ

(
0,
Fs

a
,
NFGs

c

)
− c

NFG
= − c

NFG
< 0,

Φ1(x0) = ψ (x0, 0, 0)−
c

NFG
=

c

NFG

(
NFGψ (x0, 0, 0)

c
− 1

)
.

Therefore, if
NFGψ (x0, 0, 0)

c
> 1, then there exists a unique x1 ∈ (0, x0) such that Φ1(x1) =

0. It follows from equation (4.5) that y1 =
Fd (x0 − x1)

a
> 0 and v1 =

NFGd (x0 − x1)

c
>

0. Therefore, a chronic-infection equilibrium without antibody immune responseE1(x1, y1, v1, 0)

exists when
NFGψ (x0, 0, 0)

c
> 1. Let us define the basic infection reproduction number as:
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R0 =
NFGψ (x0, 0, 0)

c
.

The parameter R0 determines whether a chronic-infection can be established. The other possi-
bility of equation (4.4) is z ̸= 0 which leads to v2 =

µ

r
. From equation (4.1) we let

Φ2(x) = s− dx− ψ(x,
F (s− dx)

a
, v2)v2 = 0.

According to Assumptions A2 and A3, we know that Φ2 is a strictly decreasing function of x.
Clearly, Φ2(0) = s > 0 and Φ2(x0) = −ψ(x0, 0, v2)v2 < 0. Thus, there exists a unique x2 ∈

(0, x0) such that Φ2(x2) = 0. It follows from Eqs. (4.3) and (4.5) that, y2 =
Fd (x0 − x2)

a
> 0

and

z2 =
NFGψ(x2, y2, v2)

b
− c

b
=
c

b

(
NFGψ(x2, y2, v2)

c
− 1

)
.

Then, if
NFGψ(x2, y2, v2)

c
> 1 then z2 > 0. Now we define the antibody immune response

activation number as:

R1 =
NFGψ(x2, y2, v2)

c
,

which determines whether a persistent antibody immune response can be established. Hence,
z2 can be rewritten as z2 =

c

b
(R1 − 1). It follows that, there exists a chronic-infection equilib-

rium with antibody immune response E2(x2, y2, v2, z2) when R1 > 1.
Clearly from Assumptions A2 and A3, we have

R1 =
NFGψ(x2, y2, v2)

c
<
NFGψ(x0, y2, v2)

c
<
NFGψ(x0, 0, 0)

c
= R0.

5. GLOBAL STABILITY ANALYSIS

In this subsection, we give proofs of the global asymptotic stability of the three equilib-
ria of model (2.1)-(2.4) by using direct Lyapunov method and applying LaSalle’s invariance
principle. Let us define the function H : (0,∞) → [0,∞) as

H(u) = u− 1− lnu.

Theorem 5.1. Let Assumptions A1-A3 be hold true and R0 ≤ 1, then the infection-free equi-
librium E0 is globally asymptotically stable (GAS).
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Proof. We construct a Lyapunov functional as:

U0 = NFG

[
x− x0 −

∫ x

x0

ψ(x0, 0, 0)

ψ(η, 0, 0)
dη +

1

F
y

+
1

F

h1∫
0

ρ1(τ)e
−µ1τ

τ∫
0

ψ(x(t− η), y(t− η), v(t− η))v(t− η)dηdτ

+
a

FG

h2∫
0

ρ2(τ)e
−µ2τ

τ∫
0

y(t− η)dηdτ

+ v +
b

r
z. (5.1)

We calculate dU0
dt along the solutions of model (2.1)-(2.4) as:

dU0

dt
= NFG

[(
1− ψ(x0, 0, 0)

ψ(x, 0, 0)

)
(s− dx− ψ(x, y, v) v)

+
1

F

h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ − a

F
y

+
1

F

h1∫
0

ρ1(τ)e
−µ1τ (ψ(x, y, v)v − ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)) dτ

+
a

FG

h2∫
0

ρ2(τ)e
−µ2τ (y − y(t− τ))dτ

+Na

h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ

− bzv − cv + bzv − bµ

r
z

= NFGs

(
1− x

x0

)(
1− ψ(x0, 0, 0)

ψ(x, 0, 0)

)
+

(
NFGψ(x, y, v)

ψ(x0, 0, 0)

ψ(x, 0, 0)
− c

)
v − bµ

r
z

= NFGs

(
1− x

x0

)(
1− ψ(x0, 0, 0)

ψ(x, 0, 0)

)
+ c

(
R0

ψ(x, y, v)

ψ(x, 0, 0)
− 1

)
v − bµ

r
z. (5.2)

From Assumptions A2-A3 we know that ψ(x, y, v) is a strictly increasing function of x and
a strictly decreasing function of y and v. Then, the first term of equation (5.2) is less than or
equal zero and

ψ(x, y, v) < ψ(x, 0, 0), x, y, v > 0

It follows that

dU0

dt
≤ NFGs

(
1− x

x0

)(
1− ψ(x0, 0, 0)

ψ(x, 0, 0)

)
+ c (R0 − 1) v − bµ

r
z. (5.3)
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Therefore, ifR0 ≤ 1, then dU0
dt ≤ 0 for all x, y, v, z > 0. Hence, solutions of system (2.1)-(2.4)

with (2.5) limited to M , the largest invariant subset of
{
dU0
dt = 0

}
[47]. We see that dU0

dt = 0

if and only if x(t) = x0, v(t) = 0 and z(t) = 0 for all t. By the above discussion each element
of M satisfies v(t) = 0 and z(t) = 0. Then, from equation (2.3)

v̇(t) = 0 = Na

h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ.

It follows that, y(t) = 0 for all t. Using LaSalle’s invariance principle, we derive that E0 is
GAS. �

To proof the global stability of the two equilibriaE1 andE2, we need the following condition
on the incidence rate function ψ.

Assumption A5.

(
1− ψ(x, y, v)

ψ(x, yi, vi)

)(
ψ(x, yi, vi)

ψ(x, y, v)
− v

vi

)
≤ 0, i = 1, 2 for all x, y, v > 0.

Theorem 5.2. Let Assumptions A1-A5 be hold true and R1 ≤ 1 < R0, then the chronic-
infection equilibrium without antibody immune response E1 is GAS.

Proof. Define

U1 = NFG

[
x− x1 −

∫ x

x1

ψ(x1, y1, v1)

ψ(η, y1, v1)
dη +

1

F
y1H

(
y

y1

)

+
ψ(x1, y1, v1)v1

F

h1∫
0

ρ1(τ)e
−µ1τ

τ∫
0

H

(
ψ (x(t− η), y(t− η), v(t− η)) v(t− η)

ψ(x1, y1, v1)v1

)
dηdτ

+
ay1
FG

h2∫
0

ρ2(τ)e
−µ2τ

τ∫
0

H

(
y(t− η)

y1

)
dηdτ

+ v1H

(
v

v1

)
+
b

r
z. (5.4)
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Calculating the time derivative of U1 along the trajectories of system (2.1)-(2.4), we obtain

dU1

dt
= NFG

[(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
(s− dx− ψ(x, y, v) v)

+
1

F

(
1− y1

y

) h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ − ay


+

1

F

h1∫
0

ρ1(τ)e
−µ1τ (ψ(x, y, v)v − ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

+ψ(x1, y1, v1)v1 ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

))
dτ

+
a

FG

h2∫
0

ρ2(τ)e
−µ2τ

(
y − y(t− τ) + y1 ln

(
y(t− τ)

y

))
dτ


+
(
1− v1

v

)Na h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ − cv − bvz

+ bvz − bµ

r
z

= NFG

[(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
(s− dx) +

ψ(x1, y1, v1)ψ(x, y, v)v

ψ(x, y1, v1)

− 1

F

y1
y

h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ +

a

F
y1

+
ψ(x1, y1, v1)v1

F

h1∫
0

ρ1(τ)e
−µ1τ ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

)
dτ

+
ay1
FG

h2∫
0

ρ2(τ)e
−µ2τ ln

(
y(t− τ)

y

)
dτ

− cv

− v1
v
Na

h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ + cv1 + bv1z −

bµ

r
z. (5.5)

Using the equilibrium conditions for E1:

s = dx1 +
a

F
y1, Fψ(x1, y1, v1)v1 = ay1, cv1 = NaGy1,
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we obtain

dU1

dt
= NFG

[
dx1

(
1− x

x1

)(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+
a

F
y1

− a

F
y1
ψ(x1, y1, v1)

ψ(x, y1, v1)
+
a

F
y1

ψ(x, y, v)v

ψ(x, y1, v1)v1

− a

F 2
y1

h1∫
0

ρ1(τ)e
−µ1τ y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1
dτ + 2

a

F
y1

+
a

F 2
y1

h1∫
0

ρ1(τ)e
−µ1τ ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

)
dτ

+
ay1
FG

h2∫
0

ρ2(τ)e
−µ2τ ln

(
y(t− τ)

y

)
dτ

− ay1
FG

h2∫
0

ρ2(τ)e
−µ2τ v1y(t− τ)

vy1
dτ − a

F
y1
v

v1


+ b

(
v1 −

µ

r

)
z. (5.6)

Using the following equalities:

ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

)
= ln

(
y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1

)
+ ln

(
ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+ ln

(
ψ(x, y1, v1)

ψ(x, y, v)

)
+ ln

(
v1y

vy1

)
,

ln

(
y(t− τ)

y

)
= ln

(
vy1
v1y

)
+ ln

(
v1y(t− τ)

vy1

)
,
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we get

dU1

dt
= NFG

[
dx1

(
1− x

x1

)(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
− ay1

F

(
ψ(x1, y1, v1)

ψ(x, y1, v1)
− 1

− ln

(
ψ(x1, y1, v1)

ψ(x, y1, v1)

))
+
ay1
F

(
ψ(x, y, v)v

ψ(x, y1, v1)v1
− v

v1
− 1 +

ψ(x, y1, v1)

ψ(x, y, v)

)
− ay1

F

(
ψ(x, y1, v1)

ψ(x, y, v)
− 1− ln

(
ψ(x, y1, v1)

ψ(x, y, v)

))

− ay1
F 2

h1∫
0

ρ1(τ)e
−µ1τ

(
y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1
− 1

− ln

(
y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1

))
dτ

− ay1
FG

h2∫
0

ρ2(τ)e
−µ2τ

(
v1y(t− τ)

vy1
− 1− ln

(
v1y(t− τ)

vy1

))
dτ

+ b
(
v1 −

µ

r

)
z.

(5.7)

equation (5.7) can be simplified as:

dU1

dt
= NFG

[
dx1

(
1− x

x1

)(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+
ay1
F

(
1− ψ(x, y, v)

ψ(x, y1, v1)

)(
ψ(x, y1, v1)

ψ(x, y, v)
− v

v1

)
−ay1
F
H

(
ψ(x1, y1, v1)

ψ(x, y1, v1)

)
− ay1

F
H

(
ψ(x, y1, v1)

ψ(x, y, v)

)

−ay1
F 2

h1∫
0

ρ1(τ)e
−µ1τH

(
y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1

)
dτ

− ay1
FG

h2∫
0

ρ2(τ)e
−µ2τH

(
v1y(t− τ)

vy1

)
dτ

+ b
(
v1 −

µ

r

)
z. (5.8)

From Assumptions A1 and A5, we get that the first and second terms of equation (5.8) are less
than or equal zero. Now we show that if R1 ≤ 1 then v1 ≤ µ

r = v2. Let R0 > 1, then we want
to show that

sgn(x2 − x1) = sgn(v1 − v2) = sgn(y1 − y2) = sgn(R1 − 1).

From Assumptions A2-A4, for x1, x2, y1, y2, v1, v2 > 0, we have

(ψ(x2, y2, v2)− ψ(x1, y2, v2))(x2 − x1) > 0, (5.9)
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(ψ(x1, y1, v1)− ψ(x1, y2, v1))(y2 − y1) > 0, (5.10)
(ψ(x1, y1, v1)− ψ(x1, y1, v2))(v2 − v1) > 0, (5.11)

(ψ(x2, y2, v2)v2 − ψ(x2, y2, v1)v1)(v2 − v1) > 0. (5.12)
First, we claim sgn(x2 − x1) = sgn(v1 − v2). Suppose this is not true, i.e., sgn(x2 − x1) =
sgn(v2 − v1). Using the conditions of the equilibria E1 and E2 we have

(s− dx2)− (s− dx1) = ψ(x2, y2, v2)v2 − ψ(x1, y1, v1)v1

=
a

F
(y2 − y1). (5.13)

Then
sgn (x2 − x1) = sgn (y1 − y2) . (5.14)

Moreover,

(s− dx2)− (s− dx1) = ψ(x2, y2, v2)v2 − ψ(x1, y1, v1)v1

= (ψ(x2, y2, v2)v2 − ψ(x2, y2, v1)v1) + (ψ(x2, y2, v1)v1

−ψ(x1, y2, v1)v1) + (ψ(x1, y2, v1)v1 − ψ(x1, y1, v1)v1).

Therefore, from Eqs. (5.9)-(5.14) we get:

sgn (x1 − x2) = sgn (x2 − x1) ,

which leads to contradiction. Thus, sgn (x2 − x1) = sgn (v1 − v2) . Using the equilibrium
conditions for E1 we have NFGψ(x1,y1,v1)

c = 1, then

R1 − 1 =
NFGψ(x2, y2, v2)

c
− NFGψ(x1, y1, v1)

c

=
NFG

c
[ψ(x2, y2, v2)− ψ(x2, y2, v1) + ψ(x2, y2, v1)

−ψ(x1, y2, v1) + ψ(x1, y2, v1)− ψ(x1, y1, v1)] .

We get sgn(R1 − 1) = sgn(v1 − v2). Hence, if R0 > 1, then x1, y1, v1 > 0, and if
R1 ≤ 1, then v1 ≤ v2 = µ

r . It follows from the above discussion that dU1
dt ≤ 0 for all

x, y, v, z > 0. The solutions of model (2.1)-(2.4) converge to Ω, the largest invariant subset of{
(x, y, v, z) : dU1

dt = 0
}

[47]. We have dU1
dt = 0 iff x = x1, v = v1, z = 0 and H = 0 i.e.

y1ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x1, y1, v1)v1
=
v1y(t− τ)

vy1
= 1 for all τ ∈ [0, ω]. (5.15)

From equation (5.15), if v = v1 then y = y1 and hence dU1
dt = 0 at E1. So Ω contains a unique

point, that is E1. Thus, the global asymptotic stability of the chronic-infection equilibrium
without antibody immune response E1 follows from LaSalle’s invariance principle. �

In the following we consider the global asymptotic stability of the chronic-infection equilib-
rium with antibody immune response E2.

Theorem 5.3. Let Assumptions A1-A5 be hold true and R1 > 1, then E2 is GAS.
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Proof. We construct a Lyapunov functional in the form:

U2 = NFG

[
x− x2 −

∫ x

x2

ψ(x2, y2, v2)

ψ(η, y2, v2)
dη +

1

F
y2H

(
y

y2

)

+
ψ(x2, y2, v2)v2

F

h1∫
0

ρ1(τ)e
−µ1τ

τ∫
0

H

(
ψ (x(t− η), y(t− η), v(t− η)) v(t− η)

ψ(x2, y2, v2)v2

)
dηdτ

+
ay2
FG

h2∫
0

ρ2(τ)e
−µ2τ

τ∫
0

H

(
y(t− η)

y2

)
dηdτ


+ v2H

(
v

v2

)
+
b

r
z2H

(
z

z2

)
. (5.16)

Function U2 satisfies:

dU2

dt
= NFG

[(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
(s− dx− ψ(x, y, v)v)

+
1

F

(
1− y2

y

) h1∫
0

ρ1(τ)e
−µ1τψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)dτ − ay


+

1

F

h1∫
0

ρ1(τ)e
−µ1τ (ψ(x, y, v)v − ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

+ψ(x2, y2, v2)v2 ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

))
dτ

+
a

FG

h2∫
0

ρ2(τ)e
−µ2τ

(
y − y(t− τ) + y2 ln

(
y(t− τ)

y

))
dτ


+
(
1− v2

v

)Na h2∫
0

ρ2(τ)e
−µ2τy(t− τ)dτ − bzv − cv


+
(
1− z2

z

)(
bzv − bµ

r
z

)
. (5.17)
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Collecting terms of equation (5.17) and applying s = dx2 +
a
F y2, we get

dU2

dt
= NFG

[
d(x2 − x)

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+
a

F
y2 −

a

F
y2
ψ(x2, y2, v2)

ψ(x, y2, v2)

+ ψ(x, y, v)v
ψ(x2, y2, v2)

ψ(x, y2, v2)
− 1

F
ψ(x2, y2, v2)v2

h1∫
0

(
ρ1(τ)e

−µ1τ

y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2

)
dτ +

a

F
y2

+
ψ(x2, y2, v2)v2

F

h1∫
0

ρ1(τ)e
−µ1τ ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

)
dτ

+
ay2
FG

h2∫
0

ρ2(τ)e
−µ2τ ln

(
y(t− τ)

y

)
dτ − ay2

FG

h2∫
0

ρ2(τ)e
−µ2τ v2y(t− τ)

vy2
dτ


− cv + cv2 + bv2z − bvz2 −

bµ

r
z +

bµ

r
z2. (5.18)

By using the equilibrium conditions of E2

Fψ(x2, y2, v2)v2 = ay2, cv2 = NaGy2 − bv2z2, µ = rv2,

and the following equalities

cv = cv2
v

v2
= (NaGy2 − bv2z2)

v

v2
,

ln

(
ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

ψ(x, y, v)v

)
= ln

(
y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2

)
+ ln

(
ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+ ln

(
ψ(x, y2, v2)

ψ(x, y, v)

)
+ ln

(
v2y

vy2

)
,

ln

(
y(t− τ)

y

)
= ln

(
vy2
v2y

)
+ ln

(
v2y(t− τ)

vy2

)
,
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we obtain

dU2

dt
= NFG

[
d(x2 − x)

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+
ay2
F

(
ψ(x, y, v)v

ψ(x, y2, v2)v2

+
ψ(x, y2, v2)

ψ(x, y, v)
− v

v2
− 1

)
− ay2

F

(
ψ(x, y2, v2)

ψ(x, y, v)
− 1− ln

(
ψ(x, y2, v2)

ψ(x, y, v)

))
− ay2

F

(
ψ(x2, y2, v2)

ψ(x, y2, v2)
− 1− ln

(
ψ(x2, y2, v2)

ψ(x, y2, v2)

))

−ay2
F 2

h1∫
0

ρ1(τ)e
−µ1τ

(
y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2
− 1

− ln

(
y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2

))
dτ

− ay2
FG

h2∫
0

ρ2(τ)e
−µ2τ

(
v2y(t− τ)

vy2
− 1− ln

(
v2y(t− τ)

vy2

))
dτ

 . (5.19)

We can rewrite equation (5.19) as

dU2

dt
= NFG

[
dx2

(
1− x

x2

)(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+
ay2
F

(
1− ψ(x, y, v)

ψ(x, y2, v2)

)
(
ψ(x, y2, v2)

ψ(x, y, v)
− v

v2

)
− ay2

F
H

(
ψ(x2, y2, v2)

ψ(x, y2, v2)

)
− ay2

F
H

(
ψ(x, y2, v2)

ψ(x, y, v)

)

− ay2
F 2

h1∫
0

ρ1(τ)e
−µ1τH

(
y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2

)
dτ

− ay2
FG

h2∫
0

ρ2(τ)e
−µ2τH

(
v2y(t− τ)

vy2

)
dτ

 . (5.20)

We note that from Assumptions A2 and A5, the first and second terms of equation (5.20) are
less than or equal zero. Noting that x, y, v, z > 0, we have that dU2

dt ≤ 0. The solutions of

model (2.1)-(2.4) converge to Ω, the largest invariant subset of
{
(x, y, v, z) : dU2

dt = 0
}

[47].

We have dU2
dt = 0 if and only if x = x2, v = v2 and H = 0 i.e.,

y2ψ(x(t− τ), y(t− τ), v(t− τ))v(t− τ)

yψ(x2, y2, v2)v2
=
v2y(t− τ)

vy2
= 1 for all τ ∈ [0, ω]. (5.21)

This yields that y = y2 for all τ ∈ [0, ω]. Therefore, if v = v2 and y = y2, then from equation
(2.3) we have 0 = ky2− bzv2− cv2 which gives z = z2. Therefore, dU2

dt = 0 at E2. The global
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asymptotic stability of the chronic-infection equilibrium with antibody immune response E2

follows from LaSalle’s invariance principle. �

6. CONCLUSION

In this paper, we have proposed a viral infection model with general incidence rate function
and antibody immune response. Two types of distributed time delays have been incorporated
into the model to describe the time needed for the virus enters the target cell and the emis-
sion of new infectious viruses. We have derived a set of conditions on the general functional
response and have determined two threshold parameters R0 and R1 to prove the existence
and the global stability of the model’s equilibria. The global asymptotic stability of the three
equilibria, infection-free, chronic-infection without antibody immune response and chronic-
infection with antibody immune response has been proven by using direct Lyapunov method
and LaSalle’s invariance principle.
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