• Title/Summary/Keyword: Gibbs distribution

Search Result 114, Processing Time 0.022 seconds

Bayesian Estimation of State-Space Model Using the Hybrid Monte Carlo within Gibbs Sampler

  • Park, Ilsu
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.203-210
    • /
    • 2003
  • In a standard Metropolis-type Monte Carlo simulation, the proposal distribution cannot be easily adapted to "local dynamics" of the target distribution. To overcome some of these difficulties, Duane et al. (1987) introduced the method of hybrid Monte Carlo(HMC) which combines the basic idea of molecular dynamics and the Metropolis acceptance-rejection rule to produce Monte Carlo samples from a given target distribution. In this paper, using the HMC within Gibbs sampler, an asymptotical estimate of the smoothing mean and a general solution to state space modeling in Bayesian framework is obtaineds obtained.

ESTIMATION OF GIBBS SIZE FOR WAVELET EXPANSIONS

  • Shim, Hong-Tae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.507-517
    • /
    • 2000
  • Existence of Gibbs' phenomenon has been well known in wavelet expansions. But the estimation of its size is another problem. Because of the oscillation of wavelets, it is not easy to estimate the Gibbs size of wavelet expansions. For wavelets defined via Fourier transforms, we give a new formula to calculate the size of overshoot. But using this we compute the size of Gibbs effect for Barttle-Lemarier wavelets.

  • PDF

Reliability of the Mixture Model with Gamma Family Using Gibbs Sampler (깁스추출법을 이용한 감마족 신뢰확률 혼합모형에 대한 연구)

  • 김평구
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.80-90
    • /
    • 1999
  • In this paper, reliability estimation using Gibbs sampler is considered for the mixture model with Gamma family, Gibbs sampler is derived to compute the features for the posterior distribution. By simulation study, the maximum likelihood estimator and the Gibbs estimator are obtained. A numerical study with a simulated data is provided.

  • PDF

RELIABILITY ESTIMATION OF A MIXTURE EXPONENTIAL MODEL USIGN GIBBS SAMPLER

  • Kim, Hee-Cheul;Kim, Pyong-Koo
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.661-668
    • /
    • 1999
  • Reliability estimation using Gibbs sampler considered for modeling mixture exponential reliability problems. Gibbs sampler is developed to compute the features of the posterior distribution. Bayesian estimation of complicated functions requires simpler esti-mation techniques due to the mathematical difficulties involved in the Bayes approach. The Maximum likelihood estimator and the Gibbs estimator of reliability of the system are derived. By simula-tion risk behaviors of derived estimators are compared. model de-termination based on relative error is considered. A numerical study with a simulated data set is provided.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR THE GIBBS SAMPLER

  • Lee, Oe-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.627-633
    • /
    • 1999
  • Let the given distribution $\pi$ have a log-concave density which is proportional to exp(-V(x)) on $R^d$. We consider a Markov chain induced by the method Gibbs sampling having $\pi$ as its in-variant distribution and prove geometric ergodicity and the functional central limit theorem for the process.

  • PDF

Gibbs Sampling for Double Seasonal Autoregressive Models

  • Amin, Ayman A.;Ismail, Mohamed A.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.557-573
    • /
    • 2015
  • In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.

Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution

  • Oh, Mi-Ra;Kim, Kyung-Sook;Cho, Wan-Hyun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.255-266
    • /
    • 2007
  • A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.

Bayesian Estimation of the Two-Parameter Kappa Distribution

  • Oh, Mi-Ra;Kim, Sun-Worl;Park, Jeong-Soo;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.

Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters (순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정)

  • 손영숙;김성욱
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.273-282
    • /
    • 2003
  • The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).

Application of Bayesian Computational Techniques in Estimation of Posterior Distributional Properties of Lognormal Distribution

  • Begum, Mun-Ni;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.227-237
    • /
    • 2004
  • In this paper we presented a Bayesian inference approach for estimating the location and scale parameters of the lognormal distribution using iterative Gibbs sampling algorithm. We also presented estimation of location parameter by two non iterative methods, importance sampling and weighted bootstrap assuming scale parameter as known. The estimates by non iterative techniques do not depend on the specification of hyper parameters which is optimal from the Bayesian point of view. The estimates obtained by more sophisticated Gibbs sampler vary slightly with the choices of hyper parameters. The objective of this paper is to illustrate these tools in a simpler setup which may be essential in more complicated situations.

  • PDF