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Abstract
In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR)

model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to
approximate empirically the marginal posterior distributions after showing that the conditional posterior distri-
bution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The
proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.
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1. Introduction

Many time series are observed at small time units (such as minutes and hours) with high frequen-
cies. These high frequency time series are characterized by exhibiting complex and multiple seasonal
patterns of any periodic pattern of fixed length. For example, hourly electricity load data can exhibit
intraday and intraweek seasonal patterns. Other examples where multiple seasonal patterns can occur
include daily hospital admissions, hourly volumes of call center arrivals, half-hourly demand for pub-
lic transportation, hourly traffic on a road, requests for cash at ATM machines every 5 minutes, hourly
access to computer web sites and daily usage of water and natural gas.

Seasonal autoregressive integrated moving average (SARIMA) models have been widely and suc-
cessfully applied to analyze time series data with single seasonal pattern in different disciplines. How-
ever, these models need to be modified or extended to accommodate multiple seasonalities. Indeed,
the initial notion of modelling multiple seasonalities can be traced back to 1971 when Thompson and
Tiao (1971) showed that monthly disconnections of the Wisconsin telephone company have annual
and quarterly (double) seasonal patterns. Several years later, Box et al. (1994, p.333) suggested
that SARIMA model could be extended to capture multiple seasonality patterns, and Taylor (2003)
explicitly stated the multiplicative double SARIMA model. In addition to SARIMA models, other
techniques have been extended to fit multiple seasonal time series, which include Neural Network,
Exponential Smoother, Innovation State model and Transfer model. A quick review of these tech-
niques can be found in Feinberg and Genethliou (2005, ch.12).

In particular, the multiplicative double SARIMA models have been the subject of interest of many
researchers and extensively studied and employed in modeling and forecasting double seasonal time
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series data. Taylor (2003) showed that electricity load in England and Wales features daily (within
day) and weekly (within week) seasonal patterns. Taylor et al. (2006) compared the forecast accuracy
of six univariate models including multiplicative SARIMA for electricity demand forecasting in Brazil
and in England and Wales. Cruz et al. (2011) empirically compared the predictive accuracy of a set
of methods for day-ahead spot price forecasting in the Spanish electricity market. Other references
can include Au et al. (2011), Baek (2010), Caiado (2008), Kim (2013), Mohamed et al. (2010, 2011)
and Taylor (2008a, 2008b) and references, among others.

Bayesian analysis of SARIMA model for single seasonality has been well established, and dif-
ferent approaches have been developed in literature. Analytical approximation is one of these ap-
proaches, which simply approximates the posterior and predictive densities to be standard closed-form
distributions that are analytically tractable, see for example Shaarawy and Ismail (1987). However,
this approach is conditioning on the initial values leading to waste observations, and treats SARIMA
model as an additive not a multiplicative model that can increase the number of unnecessary pa-
rameters. To address the limitations of analytical approximation, in recent years MCMC methods,
especially Gibbs sampling algorithm, have been proposed to ease the Bayesian time series analysis.
Ismail (2003a, 2003b) used Gibbs sampling algorithm to achieve Bayesian analysis for multiplicative
seasonal autoregressive (SAR) and seasonal moving average (SMA) models. This work is extended by
Ismail and Amin (2010) to a multiplicative SARIMA model. As far as the authors know, the Bayesian
analysis of double SARIMA model has not been addressed in the literature except for Ismail and
Zahran (2014) who recently developed a Bayesian analysis based on analytical approximation to (Ad-
ditive) Double Seasonal Autoregressive (DSAR) model. In the current paper, we develop a Bayesian
analysis based on Gibbs sampling algorithm to multiplicative DSAR model, which has the advantage
that is unconditional on initial values.

The remainder of this paper is organized as: Section 2 presents multiplicative DSAR. Section 3
is devoted to summarizing posterior analysis and the full conditional posterior distributions of the
parameters. Section 4 provides the implementation details of the proposed algorithm (including con-
vergence monitoring). The proposed methodology is illustrated in Section 5 using simulated examples
and real data sets. Finally, the conclusions are given in Section 6.

2. The Multiplicative Double Seasonal Autoregressive Model (DSAR)

A time series {yt} is said to be generated by a multiplicative seasonal autoregressive model of orders
p, P1, and P2, denoted by DSAR(p)(P1)s1 (P2)s2 , if it satisfies

ϕp(B)ΦP1 (Bs1 )ΠP2 (Bs2 )yt = εt, (2.1)

where {εt} is a sequence of independent normal variates with zero mean and variance σ2. The back-
shift operator B is defined as Bkyt = yt−k, s1 and s2 are the seasonal periods. The non seasonal
autoregressive polynomial is ϕ(B) = (1 − ϕ1B − ϕ2B2 − · · · − ϕpBp) with order p. In addition, the
seasonal autoregressive polynomials are ΦP1 (Bs1 ) = (1 − Φ1Bs1 − Φ2B2s1 − · · · − ΦP1 BP1 s1 ) with
order P1 and ΠP2 (Bs2 ) = (1 − Π1Bs2 − Π2B2s2 − · · · − ΠP2 BP2 s2 ) with order P2. Finally, the non
seasonal and seasonal autoregressive coefficients are ϕ = (ϕ1, ϕ2, . . . , ϕp)T , Φ = (Φ1,Φ2, . . . ,ΦP1 )T

and Π = (Π1,Π2, . . . ,ΠP2 )T , respectively. The time series {yt} is assumed to start at time t = 1 with
unknown starting observations y0 = (y0, y−1, . . . , y1−p−Ps).

It should be noted that the DSAR model (2.1) has an extra terms compared with the usual multi-
plicative single SAR model. The new term isΠP2 (Bs2 ) that accommodates the second seasonal pattern.
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Accordingly, the model (2.1) can be written as

yt =

p∑
i=1

ϕiyt−i +

P1∑
j=1

Φ jyt− js1 +

P2∑
τ=1

Πτyt−τs2 −
p∑

i=1

P1∑
j=1

ϕiΦ jyt−i− js1 −
p∑

i=1

P2∑
τ=1

ϕiΠτyt−i−τs2

−
P1∑
j=1

P2∑
τ=1

Φ jΠτyt− js1−τs2 +

p∑
i=1

P1∑
j=1

P2∑
τ=1

ϕiΦ jΠτyt−i− js1−τs2 + εt

= Xtβ + εt, (2.2)

where

Xt =
(
yt−1, . . . , yt−p, yt−s1 , yt−s1−1, . . . , yt−s1−p, . . . . . . , yt−P1 s1 , yt−P1 s1−1, . . . , yt−P1 s1−p, yt−s2 ,

yt−s2−1, . . . , yt−s2−p, yt−s1−s2 , yt−s1−s2−1, . . . , yt−s1−s2−p, . . . . . . , yt−P1 s1−s2 , yt−P1 s1−s2−1,

. . . , yt−P1 s1−s2−p, . . . . . . . . . , yt−P2 s2 , yt−P2 s2−1, . . . , yt−P2 s2−p, yt−s1−P2 s2 , yt−s1−P2 s2−1, . . . ,

yt−s1−P2 s2−p, . . . . . . , yt−P1 s1−P2 s2 , yt−P1 s1−P2 s2−1, . . . , yt−P1 s1−P2 s2−p

)
,

β =
(
ϕ1, . . . , ϕp,Φ1,−ϕ1Φ1, . . . ,−ϕpΦ1, . . . . . . ,ΦP1 ,−ϕ1ΦP1 , . . . ,−ϕpΦP1 ,Π1,−ϕ1Π1, . . . ,

−ϕpΠ1,−Φ1Π1, ϕ1Φ1Π1, . . . , ϕpΦ1Π1, . . . . . . ,−ΦP1Π1, ϕ1ΦP1Π1, . . . , ϕpΦP1Π1, . . . . . . . . . ,

ΠP2 ,−ϕ1ΠP2 , . . . ,−ϕpΠP2 ,−Φ1ΠP2 , ϕ1Φ1ΠP2 , . . . , ϕpΦ1ΠP2 , . . . . . . ,−ΦP1ΠP2 , ϕ1ΦP1ΠP2 ,

. . . , ϕpΦP1ΠP2

)T
. (2.3)

Equation (2.2) shows that the multiplicative DSAR model can be written as an autoregressive model
of order (1 + p)(1 + P1)(1 + P2) − 1 with some coefficients that are products of nonseasonal and
seasonal coefficients. Therefore, the model is nonlinear in ϕ,Φ, andΠwhich complicates the Bayesian
analysis. However, the following sections explain how Gibbs sampling technique can facilitate the
analysis. The DSAR model (2.2) is stationary if the roots of the polynomials ϕ(B), ΦP1 (Bs1 ) and
ΠP2 (Bs2 ) lie outside the unit circle. For more details about the properties of seasonal AR models see
Box et al. (1994).

3. Posterior Analysis

3.1. Likelihood function

Suppose y = (y1, y2, . . . , yn) is a realization of the DSAR model (2.2), knowing that εt ∼ N(0, σ2)
and employing a straightforward random variable transformation from εt to yt, the likelihood function
L(ϕ,Φ,Π,Ψ, σ2, y0 | y) = l is given by

l ∝
(
σ2

)− n
2 exp

− 1
2σ2

n∑
t=1

ε2
t


=

(
σ2

)− n
2 exp

{
− 1

2σ2 (y − Xβ)T (y − Xβ)
}
, (3.1)
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where X and β are defined in (2.3), and

εt = yt −
p∑

i=1

ϕiyt−i −
P1∑
j=1

Φ jyt− js1 −
P2∑
τ=1

Πτyt−τs2 +

p∑
i=1

P1∑
j=1

ϕiΦ jyt−i− js1 +

p∑
i=1

P2∑
τ=1

ϕiΠτyt−i−τs2

+

P1∑
j=1

P2∑
τ=1

Φ jΠτyt− js1−τs2 −
p∑

i=1

P1∑
j=1

P2∑
τ=1

ϕiΦ jΠτyt−i− js1−τs2 . (3.2)

It is obvious that this likelihood function is a complicated function in ϕ,Φ,Π and y0.

3.2. Prior specification

Assuming that the parameters ϕ,Φ,Π and y0 are independent apriori, given the error variance param-
eter σ2, the joint prior distribution is

ζ
(
ϕ,Φ,Π, σ2, y0

)
= ζ

(
ϕ | σ2

)
× ζ

(
Φ | σ2

)
× ζ

(
Π | σ2

)
× ζ

(
y0 | σ2

)
× ζ

(
σ2

)
= Np

(
µϕ, σ

2Σϕ
)
× NP1

(
µΦ, σ

2ΣΦ
)
× NP2

(
µΠ, σ

2ΣΠ
)
× Np⋆

(
µy0 , σ

2Σy0

)
× IG

(
ν

2
,
λ

2

)
, (3.3)

where p⋆ = p + P1s1 + P2s2, Nr(µ,∆) is the r-variate normal distribution with mean µ and variance
∆, and IG(a, b) is the inverse gamma distribution with parameters a and b. Therefore, the joint prior
distribution can be written as follows

ζ
(
ϕ,Φ,Π, σ2, y0

)
∝

(
σ2

)−( ν⋆2 +1
)
exp

{
− 1

2σ2

[
λ +

(
ϕ − µϕ

)T
Σ−1
ϕ

(
ϕ − µϕ

)
+ (Φ − µΦ)T Σ−1

Φ (Φ − µΦ)

+ (Π − µΠ)T Σ−1
Π (Π − µΠ) +

(
y0 − µy0

)T
Σ−1

y0

(
y0 − µy0

)] }
, (3.4)

where ν⋆ = ν+ 2p+ P1(1+ s1)+ P2(1+ s2). The prior distribution (3.4) is chosen for several reasons,
especially it is a conjugate prior and thus facilitates the mathematical calculations. Multiplying the
joint prior distribution (3.4) by the approximate likelihood function (3.1) results in the joint posterior
ζ(ϕ,Φ,Π, σ2, y0 | y) which may be written as

ζ
(
ϕ,Φ,Π, σ2, y0 | y

)
∝

(
σ2

)−( n+ν⋆
2 +1

)
exp

{
− 1

2σ2

[
λ +

(
ϕ − µϕ

)T
Σ−1
ϕ

(
ϕ − µϕ

)
+ (Φ − µΦ)T

Σ−1
Φ (Φ − µΦ) + (Π − µΠ)T Σ−1

Π (Π − µΠ) +
(
y0 − µy0

)T
Σ−1

y0

(
y0 − µy0

)
+ (y − Xβ)T (y − Xβ)

]}
. (3.5)

3.3. Full conditional distributions

The conditional posterior distribution for each of the unknown parameters is obtained from the joint
posterior distribution (3.5) by grouping together terms in the joint posterior that depend on this param-
eter, and finding the appropriate normalizing constant to form a proper density. In this study all the
conditional posteriors that are obtained for the unknown parameters are normal and inverse gamma
distributions for which sampling techniques exist.
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3.3.1. The conditional posterior of ϕ

We obtained the conditional posterior of ϕ by finding out ζ(ϕ | y,Φ,Π, σ2, y0) that we proved to be a
multivariate normal N(µ⋆ϕ , v

⋆
ϕ ) with

µ⋆ϕ =
[(

HT
ϕ Hϕ + Σ

−1
ϕ

)−1 (
Σ−1
ϕ µϕ + HT

ϕ

(
y − Lϕβϕ

))]
and

v⋆ϕ = σ
2
(
HT
ϕ Hϕ + Σ

−1
ϕ

)−1
.

Where Hϕ is a (n × p) matrix with the tith element:

Hϕti =

yt−i −
P1∑
j=1

Φ jyt−i− js1 −
P2∑
τ=1

Πτyt−i−τs2 +

P1∑
j=1

P2∑
τ=1

Φ jΠτyt−i− js1−τs2

 ,
Lϕ is a n × ((1 + P1)(1 + P2) − 1) matrix with the tth element:

Lϕt =
(
yt−s1 , . . . , yt−P1 s1 , yt−s2 , yt−s1−s2 , . . . , yt−P1 s1−s2 , . . . . . . , yt−P2 s2 , yt−s1−P2 s2 , . . . , yt−P1 s1−P2 s2

)
,

and βϕ is a column vector of order (1 + P1)(1 + P2) − 1 written as:

βϕ =
(
Φ1, . . . ,ΦP1 ,Π1,−Φ1Π1, . . . ,−ΦP1Π1, . . . . . . ,ΠP2 ,−Φ1ΠP2 , . . . ,−ΦP1ΠP2

)T .

The conditional posterior of ϕ is

ϕ j ∼ ζ
(
ϕ j | y,

(
σ2

) j−1
,Φ j−1,Π j−1, θ j−1,Θ j−1,Ψ j−1, y0

j−1, ε0
j−1

)
= N

(
µ⋆ϕ , v

⋆
ϕ

)
,

where

µ⋆ϕ =
[(

HT
ϕ Hϕ + Σ

−1
ϕ

)−1 (
Σ−1
ϕ µϕ + HT

ϕ

(
y − Lϕβϕ − Λ̂β2

))]
, v⋆ϕ = σ

2
(
HT
ϕ Hϕ + Σ

−1
ϕ

)−1
.

Hϕ is a (n × p) matrix with tith element Hϕti 2 = (yt−i −
∑P

j=1Φ jyt− js−i) and L is a (n × P) matrix with
t jth element Lt j = (yt− js).

3.3.2. The conditional posterior of Φ

We obtained the conditional posterior of Φ by finding out ζ(Φ | y, ϕ,Π, σ2, y0) that we proved to be a
multivariate normal N(µ⋆

Φ
, v⋆
Φ

) with

µ⋆Φ =
[(

HT
ΦHΦ + Σ−1

Φ

)−1 (
Σ−1
Φ µΦ + HT

Φ (y − LΦβΦ)
)]

and

v⋆Φ = σ
2
(
HT
ΦHΦ + Σ−1

Φ

)−1
.
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Where HΦ is a (n × P1) matrix with the t jth element:

HΦt j =

yt− js1 −
p∑

i=1

ϕiyt−i −
P2∑
τ=1

Πτyt− js1−τs2 +

p∑
i=1

P2∑
τ=1

ϕiΠτyt−i− js1−τs2

 ,
LΦ is a n × ((1 + p)(1 + P2) − 1) matrix with the tth element:

LΦt =
(
yt−1, . . . , yt−p, yt−s2 , yt−1−s2 , . . . , yt−p−s2 , . . . . . . , yt−P2 s2 , yt−1−P2 s2 , . . . , yt−p−P2 s2

)
,

and βΦ is a column vector of order (1 + p)(1 + P2) − 1 written as:

βΦ =
(
ϕ1, . . . , ϕp,Π1,−ϕ1Π1, . . . ,−ϕpΠ1, . . . . . . ,ΠP2 ,−ϕ1ΠP2 , . . . ,−ϕpΠP2

)T
.

3.3.3. The conditional posterior of Π

We obtained the conditional posterior of Π by finding out ζ(Π | y, ϕ,Φ, σ2, y0) that we proved to be a
multivariate normal N(µ⋆

Π
, v⋆
Π

) with

µ⋆Π =
[(

HT
ΠHΠ + Σ−1

Π

)−1 (
Σ−1
Π µΠ + HT

Π (y − LΠβΠ)
)]

and

v⋆Π = σ
2
(
HT
ΠHΠ + Σ−1

Π

)−1
.

Where HΠ is a (n × P2) matrix with the tτth element:

HΠtτ =

yt−τs2 −
p∑

i=1

ϕiyt−i −
P1∑
j=1

Φ jyt− js1−τs2 +

p∑
i=1

P1∑
j=1

ϕiΦ jyt−i− js1−τs2

 ,
LΠ is a n × ((1 + p)(1 + P1) − 1) matrix with the tth element:

LΠt =
(
yt−1, . . . , yt−p, yt−s1 , yt−1−s1 , . . . , yt−p−s1 , . . . . . . , yt−P1 s1 , yt−1−P1 s1 , . . . , yt−p−P1 s1

)
,

and βΠ is a column vector of order (1 + p)(1 + P1) − 1 written as:

βΠ =
(
ϕ1, . . . , ϕp,Φ1,−ϕ1Φ1, . . . ,−ϕpΦ1, . . . . . . ,ΦP1 ,−ϕ1ΦP1 , . . . ,−ϕpΦP1

)T
.

3.3.4. The conditional posterior of σ2

We obtained the conditional posterior of σ2 by finding out ζ(σ2 | y, ϕ,Φ,Π, y0) that we proved to be
an inverse gamma IG((n + ν⋆)/2, {λ + n(S 2)}/2), where ν⋆ = ν + 2p + P1(1 + s1) + P2(1 + s2) and

n(S 2) =
[(
ϕ − µϕ

)T
Σ−1
ϕ

(
ϕ − µϕ

)
+ (Φ − µΦ)T Σ−1

Φ (Φ − µΦ) + (Π − µΠ)T Σ−1
Π (Π − µΠ)

+
(
y0 − µy0

)T
Σ−1

y0

(
y0 − µy0

)
+ (y − Xβ)T (y − Xβ)

]
.

To ease the Gibbs sampling algorithm process, the parameter σ2 can be sampled from the Chi square
distribution using the transformation {λ + n(S 2)}/σ2 ∼ χ2

(n+ν⋆).
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3.3.5. The conditional posterior of y0

In the beginning, we write explicitly the elements of y0 using the model (2.2) as:

F yp⋆ = D y0 + εp⋆ , (3.6)

where

F =



1 0 0 · · · · · · 0 0
−γ1 1 0 · · · · · · 0 0
−γ2 −γ1 1 · · · · · · 0 0
...

...
...

. . .
...

...
...

−γp⋆−1 −γp⋆−2 · · · · · · −γ2 −γ1 1


(p⋆)×(p⋆)

,

D =



γ1 γ2 γ3 · · · · · · γp⋆−1 γp⋆

γ2 γ3 γ4 · · · · · · γp⋆ 0
γ3 γ4 γ5 · · · · · · 0 0
...

...
...

. . .
...

...
...

γp⋆−1 γp⋆ 0 · · · · · · 0 0
γp⋆ 0 0 · · · · · · 0 0


(p⋆)×(p⋆)

,

p⋆ = p+P1s1+P2s2 and yp⋆ = (y1, y2, . . . , yp⋆)T that has the p⋆ multivariate normal distribution with
zero mean and variance (σ2Ip⋆ ), where Ip⋆ is the unit matrix of order p⋆.

Using the above defined matrices and the standard Bayesian techniques, we obtained the condi-
tional posterior of y0 by finding out ζ(y0 | y, ϕ,Φ,Π, σ2) that we proved to be a multivariate normal
N(µ⋆y0

, v⋆y0
) with

µ⋆y0
=

[
DT D + Σ−1

y0

]−1 [
Σ−1

y0
µy0 + DT

(
F yp⋆

)]
and

v⋆y0
= σ2

(
DT D + Σ−1

y0

)−1
.

4. The Proposed Gibbs Sampler

The proposed Gibbs sampling algorithm for DSAR model can be implemented as:

1. Specify starting values ϕ0, Φ0, Π0, (σ2)0, and y0
0 and set j = 0. A set of initial estimates of the

model parameters can be obtained using the IS technique of Koreisha and Pukkila (1990).

2. Calculate the residuals recursively using (3.2) and the IS parameter estimates.

3. Simulate

• ϕ j ∼ ζ
(
ϕ j | y,

(
σ2

) j−1
,Φ j−1,Π j−1, y0

j−1
)
,

• Φ j ∼ ζ
(
Φ j | y,

(
σ2

) j−1
, ϕ j,Π j−1, y0

j−1
)
,

• Π j ∼ ζ
(
Π j | y,

(
σ2

) j−1
, ϕ j,Φ j, y0

j−1
)
,
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• (σ2) j ∼ ζ
((
σ2

) j | y, ϕ j,Φ j,Π j, y0
j−1

)
,

• y0
j ∼ ζ

(
y0

j | y,
(
σ2

) j
, ϕ j,Φ j,Π j

)
.

4. set j = j + 1 and go to 3.

This algorithm gives the next value of the Markov chain {ϕ j+1,Φ j+1,Π j+1, (σ2) j+1, y j+1
0 } by sim-

ulating each of the full conditionals where the conditioning elements are revised during the cy-
cle. This iterative process is repeated for a large number of iterations and continuously the con-
vergence is monitored. After the chain has converged, say at n0 iterations, the simulated values
{ϕ j+1,Φ j+1,Π j+1, (σ2) j+1, y j+1

0 } are used as a sample from the joint posterior. Posterior estimates of the
parameters are computed directly via sample averages of the simulation outputs. The convergence of
the Markov chain can be monitored by three groups of diagnostics (autocorrelation estimates, Raftery
and Lewis diagnostics, and Geweke diagnostics). First, autocorrelation estimates indicate how much
independence exists in the sequence of each parameter draws. A high degree of autocorrelation indi-
cates that more draws are needed to obtain accurate posterior estimates. Second, diagnostics proposed
by Raftery and Lewis (1992, 1995) include (1) Burn: number of draws used as initial draws or “burn-
in” before starting to sample the draws for purpose of posterior inference, (2) Total: total number of
draws needed to achieve desired level of accuracy, (3) Nmin: number of draws that would be needed
if the draws represented an iid chain, and (4) I-stat: the ratio of the (Total) to (Nmin). Raftery and
Lewis suggested that convergence problem may be indicated when values of I-stat exceed 5. Third,
diagnostics proposed by Geweke (1992), which includes two groups:

1. The first group includes the numerical standard errors (NSE) and relative numerical efficiency
(RNE). The NSE estimates reflect the variation that can be expected if the simulation were to be
repeated. The RNE estimates indicate the required number of draws to produce the same numerical
accuracy when iid sample is drawn directly from the posterior distribution.

2. The second group of diagnostics includes a test of whether the sampler has attained an equilibrium
state. This is done by carrying out Z-test for the equality of the two means of the first and last parts
of draws and the Chi squared marginal probability is obtained. Usually, the first and last parts are
the first 20% and the last 50% of the draws.

LeSage (1999) implemented the calculations of the above convergence measures using MATLAB
package. These diagnostics will be used in Section 5 to monitor the convergence of the proposed
algorithm.

5. Illustrative Examples

In this section we investigate the efficiency of the proposed estimation method based on simulated and
real-world datasets.

5.1. Simulated examples

In this subsection we present three examples of DSAR models with simulated data. Table 1 shows
these selected DSAR models and their corresponding true parameters values. By these three examples
we try to represent different pairs of the season periods that are chosen to cover different seasonality
patterns with different data type.
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Table 1: Simulated examples design

Model ϕ1 ϕ2 Φ1 Φ2 Π1 Π2 σ2

I. DSAR(1)(1)3(1)12 0.60 - 0.40 - −0.30 - 1.00
II. DSAR(1)(1)13(1)52 0.30 - −0.60 - 0.40 - 0.50

III. DSAR(2)(2)13(2)52 0.65 −0.30 0.40 0.15 −0.15 0.10 0.75

Table 2: Bayesian results for Example I

Parameter True values Mean Std. Dev. Lower Median Upper
95 % limit 95 % limit

ϕ 0.60 0.64 0.02 0.59 0.64 0.68
Φ 0.40 0.39 0.03 0.33 0.39 0.44
Π −0.30 −0.29 0.03 −0.35 −0.29 −0.23
σ2 1.00 1.02 0.04 0.94 1.02 1.11

Table 3: Autocorrelations and Raftery-Lewis diagnostics for Example I

Parameter Autocorrelations Raftery-Lewis Diagnostics
Lag 1 Lag 5 Lag 10 Lag 50 Burn Total (N) (Nmin) I-stat

ϕ −0.02 −0.02 0.01 −0.03 2 948 994 0.95
Φ −0.09 0.04 −0.04 −0.04 2 1028 994 1.03
Π 0.02 0.01 −0.04 0.01 2 1028 994 1.03
σ2 −0.03 −0.05 −0.02 −0.03 2 1028 994 1.03

Table 4: Geweke diagnostics for Example I

NSE iid RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15% χ2

ϕ 0.0010 1 0.0010 1.0149 0.0009 1.2064 0.0009 1.4460 0.7383
Φ 0.0010 1 0.0008 1.7299 0.0007 2.2224 0.0006 2.7406 0.8864
Π 0.0010 1 0.0009 1.1668 0.0008 1.6617 0.0007 1.8472 0.6076
σ2 0.0014 1 0.0012 1.2637 0.0011 1.4413 0.0011 1.4780 0.3342

Once the time series datasets are generated from these three selected DSAR models, the Bayesian
analysis is performed by assuming a non informative prior for the parameters ϕ, Φ, Π and σ2 and a
normal prior with zero mean and variance σ2Ip⋆ for the initial observations y0. To apply the proposed
Gibbs sampler, the starting values for the parameters ϕ, Φ, Π and σ2 are obtained using IS method,
and the starting values for y0 are assumed to be zeros. For each dataset, the Gibbs sampler was run
11,000 iterations where the first 1,000 draws are ignored and every tenth value in the sequence of the
last 10,000 draws is recorded to have an approximately independent sample. All posterior estimates
are computed directly as sample averages of the Gibbs sampler draws. In the following, we discuss
the results of the proposed Gibbs sampler and investigate the convergence diagnostics.

Table 2 presents the true values and Bayesian estimates of the parameters for Example I. Moreover,
a 95% confidence interval using the 0.025 and 0.975 percentiles of the simulated draws is constructed
for every parameter. Table 2 shows that the Bayesian estimates are close to the true values and the
95% confidence interval includes the true value for each parameter. Sequential plots of the parameters
generated sequences together with marginal densities are displayed in Figure 1. The marginal densities
are computed using non parametric technique with Gaussian kernel. Figure 1 shows that the proposed
algorithm is stable and fluctuates in the neighborhood of the true values. In addition, the marginal
densities show that the true value of each parameter (which is indicated by the vertical line) falls in
the constructed 95% confidence interval.

The convergence of the proposed algorithm is monitored using the diagnostic measures explained
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Figure 1: Sequential plots and marginal posterior distributions of Example I.

in Section 4. The autocorrelations and Raftery and Lewis diagnostics are displayed in Table 3 whereas
Table 4 presents the diagnostic measures of Geweke (1992). Table 3 shows that the draws for each
of the parameter have small autocorrelations at lags 1, 5, 10 and 50, which indicates there is no
convergence problem. This conclusion was confirmed by the diagnostic measures of Raftery and
Lewis where the reported (Nmin) is 994 that is close to the 1000 draws we used and I-stat value is
about 1, which is less than 5. Scanning the entries of Table 4 confirms the convergence of the proposed
algorithm where Chi squared probabilities show that the equal means hypothesis cannot be rejected
and no dramatic differences between the NSE estimates are found. In addition, the RNE estimates are
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Table 5: Bayesian results for Example II

Parameter True values Mean Std. Dev. Lower Median Upper
95 % limit 95 % limit

ϕ 0.30 0.29 0.03 0.23 0.28 0.35
Φ −0.60 −0.61 0.03 −0.67 −0.61 −0.56
Π 0.40 0.35 0.03 0.29 0.35 0.41
σ2 0.50 0.47 0.02 0.43 0.47 0.51

Table 6: Bayesian results for Example III

Parameter True values Mean Std. Dev. Lower Median Upper
95 % limit 95 % limit

ϕ1 0.65 0.64 0.03 0.58 0.64 0.69
ϕ2 −0.30 −0.29 0.03 −0.35 −0.29 −0.24
Φ1 0.40 0.40 0.03 0.34 0.40 0.46
Φ2 0.15 0.13 0.03 0.06 0.13 0.19
Π1 −0.15 −0.17 0.03 −0.23 −0.17 −0.11
Π2 0.10 0.11 0.03 0.05 0.11 0.17
σ2 0.75 0.69 0.03 0.64 0.69 0.75

close to 1, which indicates the iid nature of the output sample.
Similarly to Example I, Tables 5 and 6 present the true values and Bayesian estimates of the

parameters for Examples II and III. In addition, sequential plots with marginal densities of these two
examples are displayed in Figures 2 and 3. Similar conclusions to those of example I are obtained. We
have applied the proposed Gibbs sampler to several simulated datasets from other DSAR(1)(1)s1(1)s2
and DSAR(2)(2)s1(2)s2 models. We found their results are similar to those of presented examples, and
therefore they are not presented here.

5.2. Internet traffic time series

The internet traffic time series represents real-world hourly internet amount of traffic (in bits) dataset
collected from private Internet service provider (ISP) with centers in 11 European cities. In particular,
Cortez et al. (2012) collected this time series dataset from 06:57 hours on 7 June to 11:17 hours on 29
July 2005, which is available online and can be downloaded (http://www3.dsi.uminho.pt/pcortez/seri
es/). Figure 4 shows how the daily and weekly seasonal patterns are represented in the internet traffic
time series which reveal clearly the double seasonality. Accordingly, it is strongly recommended to
consider two seasonal components for this dataset, where the first seasonal component is due to the
intraday cycle (s1 = 24) and the second seasonal component is due to the intraweek cycle (s2 = 168).

To specify the best DSAR model that can fit the internet amount of traffic dataset, Cortez et al.
(2012) tested a collection of DSAR models using different combinations of the p, P1, and P2 values
up to a maximum order of 2; and they decided that DSAR(2)(2)24(2)168 is the best model that has
smallest value of Bayesian information criterion (BIC). Cortez et al. used non-Bayesian least squares
method to estimate the model parameters, and their estimates (Table 7).

Using the model DSAR(2)(2)24(2)168, the proposed Bayesian estimation methodology is applied
to the internet traffic time series. The hyperparameters and starting values are chosen as in the sim-
ulated examples in previous subsection. Table 7 summarizes the Bayesian estimates results, where
their sequential plots and marginal densities are displayed in Figure 3. The Bayesian estimate of
the nonseasonal parameters is close to the corresponding classical estimates, but the estimates of the
seasonal parameters are not enjoying that closeness property

It is worthwhile to test the significance of the interaction parameters in the DSAR model. As
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Figure 2: Sequential plots and marginal posterior distributions of Example II.

an example, consider the current model DSAR(2)(2)24(2)168, the interaction parameters include ϕiΦ j,
ϕiΠ j, ΦiΠ j, and ϕiΦ jΠk for i = 1, 2; j = 1, 2; and k = 1, 2. Testing the significance of these interaction
parameters in the classical approach is complicated or even impossible, however, it can be achieved
straightforwardly in the proposed Bayesian-based Gibbs sampling algorithm.

For more illustration, to test the significance of the interaction parameter η = ϕ1Φ1, the marginal
posterior distribution of η can be obtained and a confidence interval can be constructed. Accordingly,
when the credible interval of η contains zero, the significance hypothesis of η is rejected. Applying
this testing procedure to the internet traffic time series, the marginal posterior distribution of η is
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Figure 3: Sequential plots and marginal posterior distributions of Example III.
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Figure 4: Time plot of the internet traffic time series.

Table 7: Bayesian results for the internet traffic time series.

Parameter Mean Std. Dev. Lower Median Upper Cortez et al.
95 % limit 95 % limit estimates

ϕ1 1.40 0.03 1.33 1.40 1.46 1.70
ϕ2 −0.42 0.03 −0.49 −0.42 −0.36 −0.27
Φ1 0.23 0.03 0.17 0.23 0.30 0.60
Φ2 0.07 0.02 0.02 0.06 0.11 0.06
Π1 0.07 0.02 0.02 0.07 0.12 −0.08
Π2 −0.01 0.02 −0.05 −0.01 0.04 −0.28
σ2 2.41e19 1.03e19 2.22e19 2.40e19 2.62e19 -

obtained and displayed in Figure 6. Moreover, a 95% credible interval for η is −0.711 ≤ η ≥ −0.478,
which does not contain zero and therefore supports the alternative hypothesis of the interaction in the
model.

6. Conclusions

In this paper we showed that the conditional posterior distribution of the DSAR model parameters and
the variance are multivariate normal and inverse gamma, respectively. Exploiting that the conditional
posterior densities are standard distributions, we used the simple MCMC Gibbs sampling algorithm to
develop a Bayesian method for estimating the parameters of the multiplicative DSAR model. Simply,
we applied the Gibbs sampling algorithm to approximate empirically the marginal posterior distribu-
tions along with using several diagnostics that showed the convergence of the proposed algorithm was
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Figure 5: Sequential plots and marginal posterior distributions of the internet traffic time series.
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Figure 6: Marginal posterior distribution of the interaction parameter η.

achieved. Accordingly, we computed directly the posterior estimates of the parameters via sample
averages of the simulation outputs. The empirical results of the simulated and real-world datasets
confirmed the accuracy of the proposed methodology.

Future work may investigate model identification using stochastic search variable selection, out-
liers detection, and extension to multivariate double seasonal models.
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