FUNCTIONAL CENTRAL LIMIT THEOREMS FOR THE GIBBS SAMPLER

  • Lee, Oe-Sook (Department of Statistics Ewha Womans University)
  • Published : 1999.07.01

Abstract

Let the given distribution $\pi$ have a log-concave density which is proportional to exp(-V(x)) on $R^d$. We consider a Markov chain induced by the method Gibbs sampling having $\pi$ as its in-variant distribution and prove geometric ergodicity and the functional central limit theorem for the process.

Keywords

References

  1. The Annals of Statistics v.24 no.1 On the convergence of the Markov chain simulation method Athreya, K. B.;Doss, H.;Sethuraman, J.
  2. J. American Statistical Association v.88 Asymptotic Behavior of the Gibbs sampler Chan, K. S.
  3. J. American Statistical Association v.85 Sampling-based approaches to calculating marginal densities Gelfand, A. E.;Smith, A. F. M.
  4. Statistical Science v.7 no.4 practical Markov chain Monte Carlo Geyer, C. J.
  5. The Annals of Probability v.24 no.2 A Lyapunov bound for solutions of the poisson equation Glynn, P. W.;Meyn, S. P.
  6. Soviet Math. Dokl v.19 The central limit theorem for stationary Markov processes Gordin, M. I.;Lifsic, B. A.
  7. J. Computational and Graphical Statistics v.7 no.1 Functional compatibility, Markov chains, and Gibbs sampling with improper Posteriors Hobert, J. P.;Casella, G.
  8. J. Multivariate Analysis v.67 Geometric ergodicity of Gibbs and block Gibbs sampler for hierarchical random effects model Hobert, J. P.;Geyer, C. J.
  9. J. Multivariate Analysis v.66 On the geometrical convergence of Gibbs sampler in $R^d$ Hwang, C.;Sheu, S.
  10. The Annals of Statistics v.24 no.1 Rates of convergence of the Hastings and Metropolis algorithms Mengersen, K. L.;Tweedie, R. L.
  11. Markov chains and stochastic stability Meyn, S. P.;Tweedie, R.L.
  12. Canadian Journal of Statistics v.26 no.1 Markov chain Monte Carlo: Some practical implications of theoretical results Roberts, G. O.;Rosental, J. S.
  13. Biometrica v.83 no.1 Geometric convergence and central limit theroems for multidimensional Hastings and Metropolis algorithms Roberts, G. O.;Tweedie, R. L.
  14. The Annals of Statistics v.22 markov chains for exploring posterior distributions Tierney, L.