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ESTIMATION OF GIBBS SIZE
FOR WAVELET EXPANSIONS

HONG-TAE SHIM

ABSTRACT. Existence of Gibbs’ phenomenon has been well known
in wavelet expansions. But the estimation of its size is another
problem. Because of the oscillation of wavelets, it is not easy to
estimate the Gibbs size of wavelet expansions. For wavelets defined
via Fourier transforms, we give a new formula to calculate the size
of overshoot. By using this we compute the size of Gibbs effect for
Barttle-Lemarier wavelets.

1. Introduction

The Gibbs’ phenomenon [3] in trigonometric expansion is well known.
When a function is represented by the trigonometric series, one can see
that the graphs of partial sums exhibit an overshoot or downshoot near
the point of jump discontinuity of the function. This special quirk is
called the Gibbs’ phenomenon. At the beginning, this undesirable phe-
nomenon was understood as the reason that the series expansion was
approximated by a finite sum out of infinite series. To the contrary of
the earlier guess, the overshoot (or downshoot) can not be removed.
Instead, the ratio of overshoot to the jump converges to a certain con-
stant, the Gibbs’ constant, as the partial sum is taken to infinite series.
But it is not unique to the trigonometric series. Foster (2] and Richard
[5] demonstrated a Gibbs phenomenon using piecewise linear continu-
ous and spline functions respectively. Kelly[4] showed that Daubechies’
compactly supported wavelets exhibit this phenomenon at the origin
and computed the size of them by using computer. It has also been
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shown by Shim and Volkmer [6] that a Gibbs phenomenon occurs vir-
tually all types of continuous orthogonal wavelets. In mathematical
point of view, Gibbs effect is an obstacle to get a uniform convergence
of the series. In image processing, the appearance of Gibbs’ phenome-
non can be useful for earlier detection of edges among different objects.
But the existence of Gibbs’ phenomenon is one thing and the calcula-
tion of overshoot is another thing. The bigger the size of Gibbs effect,
the easier the detection of edges. So it is meaningful to try to estimate
Gibbs’ size corresponding to various wavelet expansions.

2. Background

A scaling function for a wavelet system is a square integrable function
¢ satisfying the following;

(i) {¢(t —n)}nez is an orthonormal sequence,

(21) (i) ¢(t) = > ck(2t—k) for some cx € I,
k=—o00

(iii) the closed linear span of {#(2™t — n)}m nez is L2(R).

Frequently, the above conditions are expressed in terms of their
Fourier transforms. We give a sufficient condition for (2.1) as

Z| (w + 27k)|?

ii =(— eh0/23(Ly = mo(L)p(%
LS <\/§;ck 2(2) = mo(2)8(2),

1 ]
where mo(%)) =7 Ek:c;ce“““’/2 € L*(-2m,2m),
(iii) ¢(w)is continuous at w = 0 and $(0) = 1.

Most wavelet has an associated “multiresolution analysis” consisting
of a nested sequence {V;,} of subspaces of L2(R) where the space V,, is
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the closed linear span of {¢(2™t — n)}necz. A function f in L?(R) can
be approximated by its projection P, f onto V,,;

> o]

(Prf)(@) = fiml(a) = f gl 1) f (4)dy
(2.3 g
) = Z(d’mna f>¢mn($)a

nez

where qm(zv y) = Znez ¢(2m$_n)¢(2my_n)’ ¢mn(z) = 2m/2¢(2mx__
n). For the convergence of this series, we refer to the work of Walter
8, p.12,116-128].

To study Gibbs phenomenon for wavelet expansions of f € L?(R),
we assume f is piecewise continuous and has jump discontinuity at
dyadic rational number. So that we can take it to zero by translation.
The spaces V,,, are not translation invariant for irrational translations
in general. We also assume the jump is in the positive direction, i.e.,
f(0T) > f(07). If there is a sequence T, { 0" such that

(2.4) fm(@m) — v> f(0T) as m — oo,

then the wavelet series exhibits Gibbs phenomenon on the right hand
side of 0 for the function (and similarly on the left hand side). The
necessary and sufficient condition{4] for Gibbs phenomenon on the right
(or on the left) to exist is

o0
G(z) :=/ g(z,y)dy >1 forsome z>0
(2:5) ° e
(or / g(z,y)dy <0 for some z <0),
0

where ¢(z,y) = qo(z,y).
For wavelets defined via the Fourier transform, this formula can not
be used for calculation.
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3. Formula for Wavelets defined via the Fourier transform

To convert the function G(z) in (2.5) in terms of the Fourier trans-
form, we need following two facts. Theses two are already known but
the proofs are not given (see[8, p. 191]). So we provide their proofs by
using techniques of tempered distributions for the interest of complete-
ness.

LEMMA 1. For a test function ¢ of tempered distributions, infinitely
smooth and rapidly decreasing, we have

/ coin¢(w)dw -— 0 as T — o0,

- 00
where the improper integral is in the sense of Cauchy principal value.

Proof. Now, the Cauchy principal value of the improper integral
turns out to be

/ ¢ cosdew = hm (/ /_E> ¢( ) cos Twdw

e—>0 / ﬂUi)——¢L---—)cosdew

By taking y(w) := ﬂg)—_f_(_—_“& and defining ¢(0) = lim.o¢(w), we
can see that 1 is integrable function over (—o0,00). Hence, by the
Riemann-Lebesgue lemma, the integral converges to zero as T — o0o0.0J

LEMMA 2. Let h be the Heaviside functional

1 for t>0
h(t) =
0 for t<0.

Then we have 1
h(w) = —
(w) = wé(w) + Pviw’
where h is the Fourier transform of h, §(w) is the delta functional and

Pv;i— is the Cauchy principal value of ffo o %’ldw when it is applied to
a test function ¢.
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Proof. For any test function ¢, infinitely smooth and rapidly de-
creasing, we have

(h(w), $(W)) = (h(t), B(2))
- /_ h(8)(t)dt

- /o > /_ °:o d(w)e™ duwdt.

By using the Fubini’s theorem, the double integral in the final equal-
ity turns out to be

T poo ot
: —iw
111_{%0 / / d(w)e * dwdt

T_mo/ o(w) (/ ’i“’tdt) dw

(3.1)
=/ —¢(w)dw - hm / ¢(w)dw
—o0 ¢
vk g — dim [ e,
iw TS0 J_oo
The last integral can be written as
(3.2) Tl:n;o —0:0 (%(-::—) cos Twdw — %LS)- sindew) .
By the following fact[8, p. 177]
i, S5 — 8

the second term in (3.2) converges to 7¢(0). By the lemma 1, the first
term in (3.2) converges to zero. Hence we have

(h(w), p(w)) = (Pv—,¢(w))+(7r5(w) ¢(w))

- <pv;; + 76(w), $(w))-
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Therefore we have
A 1
h(w) = nd Pv—.
(w) = mé(w) + A
DEFINITION. For a function ¢ € S,., we define it as

6® @) < Cor(L+[t)P, k=0,1,---,r; p€Z, teR.

THEOREM 1. For a scaling function ¢ € S, and q3(0) > 0, we have

oo o0 A
/ a(z,y)dy = 5-Pv / 1ow) 4o 4 1.
0 27 oo W 2

X Proof. Fora gcaling function ¢ € S,, its Fourier transform qAb satisfies
d(2nm) = o, if ¢(0) > 0 (see [7, p. 41]). Now let

1 for z>0
h(z) =

0 for z<0.

Then we have, by Parseval’s identity,

/ ” q(z, y)dy = / ” h(y)q(z,y)dy
0 —00

-/ Z h(w)i(e, w)do

= o-(h(), 3@, ).

By taking the Fourier transform of g(z, y) with respect to y and using
the Poisson’s summation formula , we obtain

i(z,w) = () Y d(z — n)em
3.3 _ "
( ) — dA)(w) Z (i(w _ 27rn)ei(w—21rn):c'

From the fact ¢(2nm) = don, we have §(z,0) = 1. By noticing
h(w) = Pv:L + n6(w), we have the result. O
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4. Gibbs size of Bartle-Lemarie family

We consider wavelets related to spline approximation. The k-th order
cardinal B-spline N'*! is defined as the k - fold ccnvolution of the char-
acteristic function of the interval [0, 1] for k = 2,3, - - - . These functions
are not scaling functions in the sense of section 2 because the orthogo-
nal condition is not satisfied. The corresponding orthogonalized scaling
function ¢!¥! leads to Battle-Lemarie wavelets. These are defined as the
function whose Fourier transform is given by

—iw\ k
(4.1) ) = (1552) e,
where (see (1, p.216])
(4.2) or(w) = (sm ) Z( + nn) "2,

We note that the space Vy = V[ ], where Vp is the closed span of
NUl(.—n),n € Z, consists of all square integrable and k — 2 times con-
tinuously differentiable functions that agree with a polynomial function
of degree at most k — 1 on each interval [n,n+ 1] for n € Z. By defining

1
rie(w) 1= Z Z_%"“—"’T)E’

we summarize some formulas as follows;

(i) q;[k](w) — o—iwk/2 (%)k 1

Vrar(w)’

ii (k] . p—ikw/2_Te(w
w 3, Ak (w — 2n7) = e~k 2ﬁ=)
(iit) (_Brk—](w) >, o (w — 2n7) = (%)k__ﬁ_)_rk w)

'I‘gk(w)

(iv) Forz € Z, _ﬂz_‘”l ¢ k]( ) E ¢[k] (w—2n7r) cos wrtisinwe

iw ’
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The formula (iii) comes immediately from (i) and (ii). The formula
(i) comes from (4.1) and (4.2) as follows

21k} . —iwk/2 Sinw/z k ...%_ —iwk/ (g>k 1
Fe (“’/? ) et = (G V@)

The formula (iv) follows when we replace z by an integer from the
equation (3.3). The following calculation derives the formula (ii);

w k
3 ¢H(w — 2nm) = Z e~ ik(w—2nm)/2 <___._w5 :")) o7 ¥ (w—2nm)

2—n

oy %(w)e——zkw/2 Z ezknr(_l)k sink('mr -

- —zkw/2ak %(w)sln —Z(w

‘_“'.)__1___
27 (% —nm)k

- nﬂ')k

— e—ikw/ 1
= 2(2 (2 +n7r)2’°> Zn:(Z —n1r)’°
= g—thw/2 rk(w)

V7o)

Now we take Qr(w) as Qr(w) := E[F](w) 3, ¥ (w — 2nm). Then by
observing

re(—w)=>_ (_—%i—m =(-1)*> (—%—_l;m—)g = (-1)*re(w),

n n

we can see Qx(w) is an even function;

k (CDFre(w)

ror(w)

(4.3) Qr(-w) = (- 1)( ) = Qx(w).

COROLLARY 1. For z € Z, the principle part of the integral in
Theorem 1 becomes

1 /°° Hw), 1 / re(@)is (@)
0

= i dw.
o rox (@) sin Tw

W 2m
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Proof. From the formula (ii) and Qi(w), we have

Gkl (2, w coswz + i sinwx
2_(_L_l = Qu(w) ' )
w iw

We also have f_c_”co Qr(w)E22dy) = 0 since Qx(w) is an even func-
tion. For the sinwx part, we have

1 [ sinwz 1 27D 102 e W)
__/_ Qi (w) ” dw = -2—7;2;/21” 5(;) __7'2k(w) sin zwdw

1 27

— T'k(w) 1 k41 _:
= @) zl:(g +7rl) sin zwdw

_ 1 re(w)rea(w)

= — sin zwdw.
4r Jo rok(w)

From the following facts

rok (2T — w) = rok (W), TR(2T —w) = (=1)Fri(w),

rie+1(27 —w) = (=) (W), sin(27 — w)z = —sinwz,
i (w)r w) . . .
we see that r%"w‘ sinwz is symmetric about w. Therefore we
obtained the corollary. 0

5. Further discussions and numerical experiments for Gibbs
size

Still it remains to determine for which integer x the integral does
have maximum value. But it seems that it is not possible to decide it
analytically. So we provide an easy algorithm to calculate the integral
numerically.

We note

Z 1 —cotg
~ L tnr 2’
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ro(w) = Z (———1——— = csc? g

— (% + nm)?
In fact, by differentiating rx(w), we obtain

k . 2
TZ(W) = —'2‘7"k+1(w), 2.€.,Tk41 = —Erk(w)-

— — — 2w — 3w w — 1-Zsin® ¢
For k =2,z =1, rp = csc® 4, r3(w) = csc® g cos 4, ry(w) = —% g
So we have

™ ' T 2w
L _____rg(w)rg(w) sinwdw = : / C(;S___' %
27 Jo ra(w) mJo 1—2sin*%
3 [T14cosw "
T om Jo 2+ cosw

3 V3

2 2

By adding %, Gibbs size equals 2 — 3@ For other k's and z’s, we
provide a numerical result by Mathematica.

[Approximation of Gibbs size for Lemarie-Barttle family]

x=1 x=2 x=3 x=4 x=5 x=10
1.133975| 0.964102| 1.009619| 0.997423| 1.000691| 0.99999
1.07115] 0.975576] 1.010249| 0.995599| 1.001895] 0.99972
1.090053| 0.955394| 1.023602| 0.987399| 1.006741( 0.99704
1.082607| 0.962574| 1.020242 0.9882( 1.007072f 0.99417
1.088664| 0.953879| 1.02842| 0.98165( 1.012024| 0.998489
1.086197| 0.957282| 1.025574] 0.983412] 1.011199| 0.998158
1.088765( 0.953077( 1.030266| 0.979002( 1.015011( 0.996885
1.015011| 0.989125| 1.028359] 0.980586| 1.013896( 0.996735
10 1.088924| 0.952617| 1.031158| 0.97768] 1.016649] 0.995429
11 1.088302| 0.953648 1.029905) 0.978886| 1.015633| 0.995478
12 1.089048| 0.952325! 1.031668| 0.976933! 1.017605( 0.99427
13 1.088673| 0.952997| 1.030825| 0.977819| 1.016778| 0.994452
14 1.089138} 0.952128| 1.031993| 0.976468| 1.018207| 0.99339
15 1.088895| 0.952575| 1.031408] 0.977119| 1.017556{ 0.99364

© W Uh WNE
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