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Estimation of Posterior Distributional Properties of 

Lognormal Distribution
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Abstract

In this paper we presented a Bayesian inference approach for estimating 
the location and scale parameters of the lognormal distribution using 
iterative Gibbs sampling algorithm. We also presented estimation of 
location parameter by two non iterative methods, importance sampling and 
weighted bootstrap assuming scale parameter as known. The estimates by 
non iterative techniques do not depend on the specification of hyper 
parameters which is optimal from the Bayesian point of view. The 
estimates obtained by more sophisticated Gibbs sampler vary slightly with 
the choices of hyper parameters. The objective of this paper is to 
illustrate these tools in a simpler setup which may be essential in more 
complicated situations.
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1. Introduction

Bayesian inference approach has now encompassed almost all branches of 

statistical science. In most Bayesian inference problems, the joint posterior 

distribution of the parameters of interest does not have a closed analytic  form. It 

is the normalizing constant of the posterior distribution that usually does not have 

a closed form. In such cases, computation for the posterior summarizations 

becomes tedious. One of the simplest solutions to such problem is to use a large 

sample approximation to the posterior distribution obtained by expanding it in a 
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Taylor series. However, this approach requires that the `unnormalized' posterior 

has a unique mode and also it gives only first order approximation. Tierney and 

Kadane (1986) and Tierney, Kass and Kadane (1989) presented a more accurate 

second order approximation for posterior expectations using Laplace's method. 

Noniterative Monte Carlo methods such as, importance sampling, rejection 

sampling and weighted bootstrap depend on an appropriate importance or envelop 

function. In particular, for many high dimensional problems, it is quite difficult to 

find an acceptably accurate importance or envelop function from which samples 

could still be drawn easily. Importance sampling approach was outlined by 

Hammersley and Handscombe (1964) and later championed for Bayesian analysis 

by Geweke (1989). Excellent summaries on rejection sampling can be found in the 

books by Riply (1987) and Devroye (1986). In subsequent sections, we presented 

applications of the importance sampling, weighted bootstrap and the Gibbs 

sampling techniques. The iterative Gibbs sampling technique originally introduced 

by Geman and Geman (1984), was exposed to statisticians by Gelfand and Smith 

(1990) in the context of Bayesian inference. They illustrated the use of the Gibbs 

sampler as a method of calculating Bayesian marginal posterior and predictive 

densities for normal data. Our objective is to explore the usefulness of this 

powerful tool to other frequently used distributions. One such distribution is the 

lognormal distribution which belongs to log-location-scale family. These are also 

known as lifetime distribution for their wide scale application in survival data 

analysis. In sections 2 and 3 an overview of the Gibbs sampling technique and its 

application to lognormal distribution in estimating posterior characteristics are 

presented. Section 4 presents a numerical illustration of these techniques.

2. Gibbs Sampling

Under standard notations, we denote densities as [.] so that [Y1,  Y2 ] , [Y1 Y2 ]  

and [Y1 ]  stand for the joint, conditional and marginal densities. We assume that 

the full conditional distributions p (yi  yj ,  j=i ),  i = 1,   ,  k  are available for 

sampling, meaning that samples may be generated by some method. Under mild 

conditions(Besag, 1974) the one dimensional conditional distributions uniquely 

determine the joint distribution [Y1,  Y2,   ,  Yk ]  and all the marginal distributions 

[Yi ],  i = 1,   ,  k. The Gibbs sampling algorithm proceeds as follows:

Step 0 We consider a set of arbitrary starting values ( )Y (0)
1 ,   ,  Y (0)

k

Step 1 Then draw Y
(1)
1  from [Y1 Y

(0)
2  ,   ,  Y (0)

k ].

Step 2 Draw Y
(1)
2  from [Y2 Y (1)

1  ,  Y (0)
3  ,   ,  Y (0)

k ].
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Step k Draw Y (1)
k  from [Yk Y (1)

1  ,  Y (1)
2  ,   ,  Y (1)

k − 1 ].

After 1 iteration, we have ( )Y (1)
1 ,   ,  Y (1)

k  and after t  such iterations, we 

obtain ( )Y (t)
1 ,   ,  Y (t)

k  which is our t-th Gibbs sample. Geman and Geman 

(1984) showed that ( )Y (t)
1 ,   ,  Y (t)

k  → [Y1,  ,  Yk ]  in distribution as t →∞  and 
the convergence is exponential in t. In the context of Bayesian analysis, we are 

required to sample from the joint posterior distribution [Y1,  ,  Yk x ]. But with 

the use of Gibbs sampler it suffices to draw from each of the univariate 

conditional distributions only. Then an estimate of marginal density of Yi  can be 

obtained from each of the univariate conditional distributions p (yi yj,  i=j).  

Subsequently the distributional properties can easily be estimated. For example, a 

marginal density estimate of the marginal density of Yi  is given by,

p̂ (yi x) =
1
m Σ

j = 1

m

P ( )yi y
(t)
k,j ,  k=i ; x .                  (2.1)

The marginal density estimated by this method is more reliable than that 

estimated by other methods such as kernel density estimation.

3. The Lognormal Distribution

The lognormal distribution with two parameters may be defined as the 

distribution of a random variable whose logarithm is normally distributed. Such a 

variable is necessarily positive and in real life from the sizes of organisms to the 

number of species in Biology, incomes in Economics and survival/failure times in 

clinical trials, variates are inherently positive. Also it is very common to use a 

logarithmic transformation of a variable in data analysis when it deviates 

considerably from normality. The parameter estimates from the inverse 

transformation is biased, which makes the use of normal distribution less 

attractive for inference purposes. An elaborate presentation of the theory and 

application on lognormal distribution can be found in Crow and Shimizu (1988). In 

this paper we presented a Bayesian inference approach for the location and scale 

parameters of the lognormal distribution using iterative Gibbs sampling algorithm. 

We also presented estimation of location parameter only by two non iterative 

methods, importance sampling and weighted bootstrap. Scale parameter is assumed 

to be known to keep the computation simple.

3.1 Posterior Computations for Lognormal Distribution
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We consider a positive random variable Y  to be lognormally distributed with 

parameters µ  and σ2  if X =  ln Y  is normally distributed with mean µ  and 

variance σ2. Then the likelihood function for µ  and σ2  can be written as,

L(µ,  τ ) =  (2π )
−

n
2






Π
i = 1

n

Yi

− 1

 (τ )
n
2  exp 









−
τ
2 Σi = 1

n

( ln Yi − µ )2 ,        (3.1)

where τ =
1

σ2 .  To carry out Bayesian inference, we can elicit the joint prior 

distribution for the parameters µ  and τ , π (µ, τ ) = π (µ τ )π (τ )  as follows:

π (µ τ ) ∼  N(µ0,  τ
− 1σ2

0 ),

π (τ ) ∼  G








0

2
,  
γ0

2
,

where µ0, σ
2
0, 0  and γ0  are hyper parameters, N  and G  stand for the Gaussian 

and Gamma distributions, respectively. For such a prior elicitation, the joint 

posterior distribution can be written up to the proportionality constant as;

π (µ,  τ y) ∝τ
n
2

+ 0

2
−

1
2  exp 









−
τ
2 Σ

i = 1

n

( ln Yi − µ)2 +
1

σ2
0

(µ− µ0 )
2 + γ0   .

In this case, the proportionality constant is straightforward to evaluate which 

may not be the case in high dimensional models. The joint posterior distribution 

of µ  and τ  can be evaluated as,

π (µ,  τ y) ∝ 1
k
τ

n
2

+ 0

2
−

1
2  exp 









−
τ
2 Σ

i = 1

n

( ln Yi − µ )2 +
1

σ2
0

(µ− µ0 )2 + γ0    ,

where k =
(2π )

1
2 ( )n+ σ− 2

0
−

1
2 Γ









n+ 0

2

1
2

γ0 +
µ2

0

σ2
0

+Σ ( ln Yi )
2 −

(µ0σ
− 2
0 +Σ ln Yi )

2

n+ σ− 2
0

 .

The marginal posterior densities of µ  and τ  are straightforward to obtained as 

given below:
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P [µ y] ∝ 1 +
c(µ− a )2

b− ca 2

−
n + 0 + 1

2
 ,

which is the kernel of t  distribution with location and dispersion parameters a  and 

(n+ 0)c

b− ca 2

− 1

, respectively and degrees of freedom n+ 0. Also, a, b, and c  in 

the above expression is defined as,

a =
nσ− 2

0 +Σn
i = 1 ln Yi

n+ σ− 2
0

,

b = γ0 +
µ2

0

σ2
0

+ Σ
i = 1

n

 ln Yi ,

c = n+σ− 2
0  .

Similarly, the marginal distribution of τ  can be obtained as,

P [τ y] ∝τ

n + 0

2
− 1

 exp 








−
τ
2

γ0 +
µ0

σ2
0

+ Σ
i = 1

n

( ln Yi )
2 − (n+ σ− 2

0 )a 2    .

That is,

τ y ∼  G
n+ 0

2
,  

1
2









γ0 +
µ0

σ2
0

+ Σ
i = 1

n

( ln Yi)
2 −  (n+ σ− 2

0 )a 2  .

Therefore, inference about the parameters µ  and σ2  can be made from these 

marginal distributions. In the next two sections we discuss two methods for 

making inference about µ  and σ2  without requiring to evaluate their joint 

distributions.

3.2 Non Iterative Techniques

The importance sampling technique starts with selecting an importance density 

which approximates the posterior density as well as is easy to sample from. We 

choose t-distribution with 5 d.f. with certain location and scale as the importance 

density g (µ ) , which could be taken as an approximation of the likelihood times 
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the prior. We define the weight function, w (µ ) , as w (µ ) =
L (µ )π (µ )

g (µ )
. Next 

draw µ1,  ,  µN  from g (µ ) . Then get Ẽ (µ y) =
ΣN

i = 1µi w (µi )

w (µi )
,

Ẽ (µ2 y) =
ΣN

i = 1µ
2
i w (µi )

w (µi )
 and Var̃ (µ y) = Ẽ [µ2 y ]− Ẽ 2 [µ y ].

Like importance sampling, under weighted bootstrap method we draw µ1,  ,  µN  

from a density g (µ )  that approximates the likelihood times the prior. We consider, 

g (µ )  as t5  as well. Now we define w(µi)=
L(µi)π(µi)

g(µi)
 and qi =

wi

ΣN
i = 1wi

. Finally 

we draw µ*  from the discrete distribution over µ1,  ,  µN  which places mass qi  

at µi. Then Ẽ (µ|y ) =
1
N
ΣN

i = 1µ
*
i   and Var̃ (µ|y ) =

1
N − 1

ΣN
i = 1 (µ*

i − Ẽ (µ|y ))2 . 

A numerical illustration of importance sampling and weighted bootstrap for 

estimating the location parameter µ  assuming the scale parameter τ  known is 

given in section 4.

3.3 The Gibbs Sampling Algorithm

In order to apply the Gibbs algorithm, which we outlined in section 2, for 

estimating the parameters µ  and σ2, we consider the two stage hierarchy for the 

prior information of the parameters µ  and τ. We consider τ =
1

σ2
 for which prior 

elicitation is easier. We elicit the prior distributions for µ  and τ  as,

π (µ) ∼  N( )µ0,  σ
2
0  ,

π (τ ) ∼  G








0

2
,  
γ0

2
 .

The full conditional distributions for µ  and τ  can be derived as under;

π (µ|τ, y)∼  N
τ ln Yi + µ0σ

− 2
0

τ+ σ− 2
0

,  (τ+ σ− 2
0 )− 1  ,

π (τ|µ, y) ∼  G






n
2

+ 0

2
,  

1
2 Σ

i = 1

n

( ln Yi − µ )2 +  γ0      .

Now the algorithm proceeds as follows:  Consider an arbitrary starting point 
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µ(0),  τ(0) . Draw µ(1) ∼  π ( )µ|τ(0), y  and τ(1) ∼  π ( )τ|µ(1), y . We repeat these 

steps until desired samples are drawn. After t  iteration we have ( )µ(t),  τ(t) . 

According to Geman and Geman (1984), ( )µ(t),  τ(t)  → [µ,  τ ]  in distribution as 

t →∞.
In following section we consider a numerical illustration of the techniques 

presented in subsection 3.1 for estimating the posterior location and scale 

parameters of lognormal distribution.

4. Numerical Illustration

For importance sampling we simulated samples from lognormal distribution with 

location 15 and scale 4.5. That is, we generated samples from the distribution,

f (y|µ, τ ) =  (2π )
−

1
2 (Yi )

− 1(4.5 )
1
2  exp 







−
4.5
2

( ln Yi − 15 )2 .

We elicit a normal prior for µ  assuming τ  as known and setting its value to 1, 

as

π (µ|µ0 ) ∝ exp 







−
1
2

(µ− µ0 )
2  .

So the likelihood times the prior becomes,

L(µ )*π (µ ) ∝ exp 








−
1
2 Σi = 1

n

( ln Yi − µ )2  exp






−
1
2

(µ− µ0 )
2  .

The estimation of µ  is then carried out through importance sampling technique 

given in subsection 3.2 assuming a t  distribution with 5 d.f as the importance 

density. In any Bayesian analysis, one should carry out the `sensitivity analysis' 

by varying the choice of the hyper parameters in the prior distribution. It enables 

one to see if there is any impact of these choices on inference. We conducted the 

same analysis for three sets of hyper parameter, µ0  in the prior distribution of µ. 

For the following choices of hyper parameter, µ0  the estimated posterior means 

and variances of µ  by importance sampling are listed below:
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Table 1 Posterior mean and variances for µ  by importance sampling

π (µ|µ0 ) Ẽ (µ|y ) Ṽ (µ|y )

N (12, 1 ) 15.259 1.1  e − 12

N (10, 1 ) 15.009 5.654  e − 13

N (8, 1 ) 14.961 6.605  e − 7

Under same assumptions, the estimated posterior means and variances of µ  by 

weighted bootstrap method are listed below:

Table 2 Posterior mean and variances for µ  by weighted bootstrap

π (µ|µ0 ) Ẽ (µ|y ) Ṽ (µ|y )

N (12, 1 ) 14.958 1.125  e − 10

N (10, 1 ) 14.958 1.654  e − 11

N (8, 1 ) 14.904 2.605  e − 11

We assumed a t  distribution with 5 degrees of freedom, location 8.35 and scale 

2.25 as the importance density to approximate the likelihood time the prior in both 

cases. It is to be noted that we do not require to estimate τ  for given µ  using 

these non iterative techniques since the likelihood times the prior for τ  assuming 

µ  known has a Gamma kernel. So the posterior mean and variance of τ  can be 

obtained easily from the properties of Gamma distribution. Finally to implement 

the Gibbs algorithm we generated samples from lognormal distribution with 

location 0.735 and scale 0.389. The prior specifications for µ  and τ  and the full 

conditionals are given in the subsection 3.3. We considered five arbitrary sets of 

starting values for µ  and τ  as 1,  1 , [0.5,  0.5 , 3,  4 , 2.5,  1.5  and 5,  3 . 

Then we ran the Gibbs sampler for 1000 iteration to sample from the full 

conditionals for each starting values. From each of these five runs we let burn-in 

phase of 750 samples and retained one fourth of the Gibbs samples (250) giving a 

total sample size of 1250 for subsequent computations. Then for three sets of 

hyper parameters for µ  and τ  the posterior estimates of means and variances of 

µ  and τ  are obtained as follows:
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Table 3 Posterior mean and variances for µ  by Gibbs sampling

µ0 τ0 Ẽ(µ|y) Ṽ(µ|y)

2 1 1.987 0.979

3 1.5 3.012 1.548

4.5 2.5 4.509 2.477

Table 4 Posterior mean and variances for τ  by Gibbs sampling

0 γ0 Ẽ(τ|y) Ṽ (τ|y )

2.1 1 0.980 616.868

2.5 1.2 0.141 7.015

1.5 0.5 0.002 0.001

The posterior mean and variances for µ  and τ  are highly dependent on the 

choice of the hyper parameters as well as the simulated data. The choices of the 

hyper parameters were made arbitrarily after running the Gibbs algorithm for 

several other choices [data not shown].

5. Discussion

In this paper a simple illustration of some heavily involved Bayesian 

computation techniques has been presented for a distribution that arises frequently 

in lifetime data analysis. In subsection 3.1 we presented a straight forward 

computation of the marginal posterior densities of µ  and τ  after computing their 

joint posterior distributions. Hence, any inference regarding the parameter of 

interest could be carried out based on these marginal densities. However, we 

illustrate the Bayesian computational tools such as, importance sampling, weighted 

bootstrap and Gibbs sampling for estimating the properties of the Lognormal 

distribution. In particular, we implement these tools to carry out the posterior 

estimation of the location and scale parameters of the lognormal distribution 

without requiring to evaluate the joint posterior distribution of µ  and τ. This fact 

is highly important for estimating parameters in high dimensional models in 

practical problems. Also application of Gibbs algorithm which suited best in high 

dimensional cases is very straight forward to implement.

It is to be noted that the estimated posterior mean obtained by non iterative 

techniques, such as, importance sampling and w weighted bootstrap, do not vary 

for different choices of hyper parameters. This situation is sometimes referred to 

as that `the likelihood is dominated by the data, not by prior information'. In this 

case, Bayesian and frequentist inference are fairly similar. That is, estimation does 
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not heavily depend on the prior information. However, we observe reverse scenario 

in the estimation by iterative Gibbs sampler where the posterior estimates vary 

with the different choices of hyper parameters, which is also difficult to interpret 

since the more sophisticated Gibbs algorithm should provide more plausible results. 

One explanation could be that we specified prior distribution for one parameter 

assuming the other as known in the non - iterative schemes. This may reduce 

the variability of estimates for different choices of hyper parameters in the end. 

And it was not the case with iterative Gibbs sampling where we specified priors 

for both location and scale parameters. Also convergence issue comes with any 

iterative procedure. One has to check at least graphically if the algorithm had 

converged or not. However, the algorithm converged quickly in our simple 

case[graphs are not provided]. Another limitation to be mentioned here is that the 

posterior estimates obtained in section 4 depend on the simulation of the sample 

observations since we did not apply the methods to any real data set. Having 

reported the limitations we need to mention possible merits of this work as well. 

In many social and behavioral studies the outcomes of interest are usually skewed 

and the common practice is to model these using regression procedure under 

normality assumption on the log transformed outcome variables. Back 

transformation of the estimates and their standard errors are possible but is 

difficult to interpret. Bayesian techniques illustrated here for the Lognormal 

distribution may be an alternative way to estimate the model parameters and the

results may be compared to those obtained using regression analysis.
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