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FUNCTIONAL CENTRAL LIMIT THEOREMS
FOR THE GIBBS SAMPLER

OESOOK LEE

ABSTRACT. Let the given distribution 7 have a log-concave density
which is proportional to exp(—V (x)) on R?. We consider a Markov
chain induced by the method of Gibbs sampling having 7 as its in-
variant distribution and prove geometric ergodicity and the functional
central limit theorem for the process.

1. Introduction

Let 7 be a probability distribution on R¢ (d > 2), and suppose that we
are interested in estimating characteristics of it, such as m(B) or [ fdr
for some measurable function f. Even when 7 is fully specified, one may
have resort to methods like Markov chain Monte Carlo simulation, espe-
cially when it is not computationally tractable. In other words, one can
construct an irreducible Markov chain having the distribution 7 as its
invariant distribution and whose transition function is tractable. One of
the widely applicable methods of constructing such Markov chains is the
method of Gibbs sampling (see, e.g., Gelfand and Smith (1990), Geyer
(1992), Hobert and Casella (1998), Roberts and Rosental (1998)).

Let m be the joint probability distribution of X = (X3, Xs,--- , Xy).
The transition from x,_; to X, is just to replace the jth component of x,,_;
by drawing a realization from the distribution p(z;|X(—j) = X,-1(—5)),
where x,_1(—7j) is equal to x,_; with its jth component being omitted
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and 1 < j <d, j =n modulo d. That is, the updating of x, is done com-
ponentwise and sequentially by drawing from the conditional distribution
of the component given the remaining components being fixed. Markov
chain X, obtained by the method of Gibbs sampling is inhomogeneous
but X, is a homogeneous Markov chain.

Asymptotic behavior of the induced Markov chain is crucial for the
success of approximation. In practice, the speed of convergence to the
invariant distribution is of interest and it is desirable that the Markov
chain is geometrically ergodic. Central limit theorem gives the size of the
Monte Carlo error. Proving geometric ergodicity is not only important
in its own right but also the easiest and the most common method to
establishing functional central limit theorem.

We note that Chan (1993), Tierney (1994), Athreya and et al. (1996),
Hobert and Geyer (1998) and Hwang and Sheu (1998) have developed
sufficient conditions for geometric ergodicity of certain Gibbs sampler. In
Roberts and Tweedie (1996) and Mengersen and Tweedie (1996), Hastings
and Metropolis algorithm is considered, where drift condition described
by Meyn and Tweedie (1993) is used to show that Gibbs sampler is geo-
metrically ergodic and to establish central limit theorems.

In this paper, we model the Gibbs sampler in terms of stochastic differ-
ence equation and use the drift condition to prove geometric ergodicity of
the induced Markov chain, and then obtain a class of functions for which
functional central limit theorem holds.

We refer the reader to Meyn and Tweedie (1993) for general contents
of Markov chain theory and to Hwang and Sheu (1998) for stochastic
difference equation approach for Gibbs sampler.

2. Main Results

Let m be a probability distribution on (R?, B?) known to a constant
multiple and let 7 have a density given by

(2.1) m(x) oc eV,

Let X be a given initial point and let X© X3 X® ... be the Gibbs
sampler, which is homogeneous Markov chain in R? with transition prob-
ability density function p(x,y) given by, for x = (z1,zs,---,z4) and
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Y= (yl)y2" ot 7yd)>
p(%,¥) = p1(v1l(z2, - -+, Za))P2(¥2l (Y1, 3, - , Za)) - -+ Pa(Wal(y1, -+, Ya-1))

where
e~V W Thi1y 2d)

pk(ykl(yla ot Yk-1 Tet1, 0t 7md)) = f eV (v, Y1’,,~.’:,,-k__,_1,...,a:d)dyk, '

Let P (x,dy) denote the n-step transition probability function for
X},

We make the following assumptions on V:
Assumption (A)
(1) V : R* — R is smooth, strictly convex and there are a;,as > 0

such that
2

&V ,
. < < .
(2.2) oy < 8207, (x)<ay, -VxXER

(2) V(0) = miny V(x).

Note that m(x) is positive everywhere on R?, and hence {X™} is irre-
ducible and aperiodic and has 7 as its unique invariant measure.

To represent {X(™} by using stochastic difference equation, we define
éx(1 < k < d) and ¥ (2 < k < d) on R%! as follows:
For w = (wy,ws, -+ ,waq_y) € R,

V(wh sy Wi-1, ¢k(W),’U)k, T 7wd~—l)
- myinV(wl, cee Wi, Y, Wg - - 7wd—1)
and
¢2(W) = ¢2(¢1(w),w2, T 7wd——l)
P3(w) = ¢a(d1(w), Ya(W), w3, -+, Wa-1)
Ye(w) = ¢d(¢1(W),:ﬁ2(W), o P1(w)).
Let

U = (32,43, -+ ,%a).
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Then XD = (X Z(+D) can be denoted by
Xl(n+1) — ¢1(Z(n)) + E(n)
2+ = g(ZM) + n™.

Here Z0D) = (x{), x{) L. XDy and {¢™} and {n™} are se-
quences of random vectors in R and R%"!, respectively.

Define V : R*! — R by

(2.3) V(z) = V(¢1(z),2), Vze R
We can easily show that oy|z|* < 17(z) < fay|zf?.
We write

Pg(x) := / o(y)P(x,dy), ()= / o(y)dn(y).

THEOREM 2.1. Under the assumption (A), the Gibbs sampler {X™}
is geometrically ergodic.

PROOF. Define a Lyapunov function g : R — R by

(2_4) g((x1, . ,md)) — e)«V(zz,...,md) + k,
where k > 1 is any constant and A > 0 is given later. _
Then, for x® = (z{™, .- ,:1:((1")), z® = (z{V, ... ,:1:&”)), we may choose

c1,¢> 0 and 0 < v < 1 such that

(25)  Pg(x™) = E[g(X"*V) | X™ = x|

E[e/\V(z(nH)) +k | X(n) — x(n)]

0, T WED) G TV EEENIENP) | p

Cle/\(1+0/\)7\7(z(")) + k.

IAIA

Since the proofs of two inequalities in (2.5) closely follow from those of
the theorem 3.5 in Hwang and Sheu (1998), we refer to that paper for
details. Now choose A so that (1 + cA)y < 1. If we take go > 0 so large

that A(1 — (1 + cA)'y)V(z(”)) > 1+In ¢ if 2] > qo, we get

1
Po) < o)+ (k= 2), 1> 0
[
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Then we may choose r, % <r < 1and q > g such that

(2.6) Pg(x) <rg(x), l|z[>q
and
(2.7 Pg(x) <b<oo, |z|]<q.

Note that {X™} is a Feller chain, and therefore every compact set is
small. That is, there are constants € > 0, ng > 1, and a probability mea-
sure v such that P (x,.) > ev(-), |x| <g¢. But, since PM)(x,-) does
not depend on the first coordinate z; of x = (1, z), we have P{™)(x,.) >
ev(), |z < g, which implies that {x = (z;,2)||z| < ¢ for some ¢q > 0}
is a small set for {X™}. Hence from (2.6) and (2.7), the conclusion fol-
lows. a

(2.6) together with (2.7) can be written in the form of
(2.8) Pg(x) < rg(x) + blc,

where b < oo and I is the indicator function of C.

Moreover, (2.8) is equivalent to the following statement (Meyn and
Tweedie (1993), Chapter 15); There are M < oo and p < 1 such that

(2.9) IP™(x, ) —7lly < Mg(x)p",
where for any signed measure p, the g—norm is defined as
Iy = sup | [ £(s)uay).
Ifl<g

One of the important results which follows from the proof of geomet-
ric ergodicity is a (functional) central limit theorem. We consider the
functional central limit theorem for

[nf]

(210) %) = 2= Y (FXP) (), ¢20
k=0

which is studied by many authors (see, e.g. Roberts and Tweedie (1996),
Tierney (1994), Hobert and Geyer (1998) etc.).
Let || - ||z denote the L2 norm on R?.

Next two lemmas are applied to find a class of functions for which
functional central limit theorems holds.
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LEMMA 2.1 (Gordin and LifSic (1978)). For Harris ergodic chain, sup-
pose that f is in the range of I — P, say f = (I — P)h for some h € L*(w).
Then Y,(t) in (2.10) converges to a Brownian motion with mean 0 and
variance parameter given by o(f)? = ||h||2 — || Ph||3 for any initial distri-
bution.

LEMMA 2.2. If Y2 ||P*(f — 7(f))|l2 < oo, then f — w(f) belongs to
the range of P — I.

PROOF. Let h = — > o2 P*(f — 7(f)) and apply P — I to the right
side of the equation. O

THEOREM 2.2. If g € L*(m) and |f| < g, then the functional central
limit theorem holds for f.

PROOF. Suppose that |f| < g. Then, from (2.9), |P"f(x) — 7(f)| <
Mg(x)p"™ and then

1P f(x) — (HIE = / |P"f(x) — n(f)Pr(dx) < M2p™ / (9(x))Pm(dx).

Hence if g € L*(w), then for any f with |f| < g, > oo |P*(f — 7(f)ll2 <
00. By above lemmas, functional central limit theorem holds for f. O

COROLLARY 2.1. Functional central limit theorem holds for any f such
that f2 < g.

PROOF. From (2.8), we have

(2.11) Pgt < Mig? + b,
Note that 7(g) < oo. If |f] < g2, i.e., f2 < g, by (2.11) and theorem (2.2),
functional central limit theorem holds for f. O

COROLLARY 2.2. Functional central limit theorem holds for every
bounded measurable function f.

PROOF. Let |f] < C for some C < oco. If we take k = C? in g in (2.4),
then f? < g. Apply corollary 2.1 to obtain the result. 0O
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