• Title/Summary/Keyword: Geometric Modeling

Search Result 735, Processing Time 0.026 seconds

기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성 (Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity)

  • 김기태;박범희;김다진;한상을
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

다중반응표면최적화를 위한 공정능력함수법에서 최소치최대화 기준의 활용에 관한 연구 (Using the Maximin Criterion in Process Capability Function Approach to Multiple Response Surface Optimization)

  • 정인준
    • 지식경영연구
    • /
    • 제20권3호
    • /
    • pp.39-47
    • /
    • 2019
  • Response surface methodology (RSM) is a group of statistical modeling and optimization methods to improve the quality of design systematically in the quality engineering field. Its final goal is to identify the optimal setting of input variables optimizing a response. RSM is a kind of knowledge management tool since it studies a manufacturing or service process and extracts an important knowledge about it. In a real problem of RSM, it is a quite frequent situation that considers multiple responses simultaneously. To date, many approaches are proposed for solving (i.e., optimizing) a multi-response problem: process capability function approach, desirability function approach, loss function approach, and so on. The process capability function approach first estimates the mean and standard deviation models of each response. Then, it derives an individual process capability function for each response. The overall process capability function is obtained by aggregating the individual process capability function. The optimal setting is given by maximizing the overall process capability function. The existing process capability function methods usually use the arithmetic mean or geometric mean as an aggregation operator. However, these operators do not guarantee the Pareto optimality of their solution. Moreover, they may bring out an unacceptable result in terms of individual process capability function values. In this paper, we propose a maximin-based process capability function method which uses a maximin criterion as an aggregation operator. The proposed method is illustrated through a well-known multiresponse problem.

Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV

  • Song, Yuchen;Shentu, Yunqi;Qian, Yalan;Yin, Junlian;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.79-92
    • /
    • 2021
  • Venturi tube is based on turbulent flow, whereby the microbubbles can be generated by the turbulent fragmentation. This phenomenon is common in several venturi bubblers used by the nuclear, aerospace and chemical industries. The first objective of this paper is to study the liquid-phase velocity field experimentally and develop correlations for the turbulent quantities. The second objective is to research velocity field characteristics theoretically. Stereoscopic PIV measurements for the velocity field have been analyzed and utilized to develop the turbulent kinetic energy in the venturi tube. The tracking properties of the tracer particles have been verified enough for us to analyze the turbulence field. The turbulence kinetic energy has a bimodal distribution trend. Also, the results of turbulence intensity along the horizontal direction is gradually uniform along the downstream. Both the mean velocity and the fluctuation velocity are proportional to the Reynolds number. Besides, the distribution trend of the mean velocity and the velocity fluctuation can be determined by the geometric parameters of the venturi tube. An analytical function model for the flow field has been developed to obtain the approximate analytical solutions. Good agreement is observed between the model predictions and experimental data.

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

누설 인덕턴스를 포함한 DAB 컨버터용 고주파 변압기의 머신러닝 활용한 최적 설계 (Machine-Learning Based Optimal Design of A Large-leakage High-frequency Transformer for DAB Converters)

  • 노은총;김길동;이승환
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.507-514
    • /
    • 2022
  • This study proposes an optimal design process for a high-frequency transformer that has a large leakage inductance for dual-active-bridge converters. Notably, conventional design processes have large errors in designing leakage transformers because mathematically modeling the leakage inductance of such transformers is difficult. In this work, the geometric parameters of a shell-type transformer are identified, and finite element analysis(FEA) simulation is performed to determine the magnetization inductance, leakage inductance, and copper loss of various shapes of shell-type transformers. Regression models for magnetization and leakage inductances and copper loss are established using the simulation results and the machine learning technique. In addition, to improve the regression models' performance, the regression models are tuned by adding featured parameters that consider the physical characteristics of the transformer. With the regression models, optimal high-frequency transformer designs and the Pareto front (in terms of volume and loss) are determined using NSGA-II. In the Pareto front, a desirable optimal design is selected and verified by FEA simulation and experimentation. The simulated and measured leakage inductances of the selected design match well, and this result shows the validity of the proposed design process.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구 (A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane)

  • 김종대;오석형;김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

저소음 치차설계를 위한 치형수정에 관한 연구 (Analysis of Gear Noise and Design for Gear Noise Reduction)

  • 윤구영;박왕준
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.129-135
    • /
    • 1996
  • The area of gear vibration and noise, has recently been the focus of many studies. The proper kinematic and geometric design of gears, the mathematical modeling of gear system are essential for a good design. This work present a gear disign for reducing noise, and practical approaches used for machinery noise reduction slong with the summary of methods available for predicting gear noise in terms of the transmis- sion error, and show a comparative study with other methods. A new tooth profile modification is proposed for reducing vibration and noise of involute gears. The method is based on the use of cubic spline curves. The tooth profile is constrained to assume an involute shape during the loaded operation. Thus the new gear profile assures conjugate motion at all points along the line of action. The new profile is found to result in a more uniform static transmission error compared to not only standard involute profile but also modificated profile therby contributing to the improvement of vibration and noise characteristics of the gear.

  • PDF

Spatial resolution and natural image quality assessment evaluation of gamma camera image using pinhole collimator in lutetium-yttrium oxyorthosilicate scintillation detector

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2567-2571
    • /
    • 2023
  • Scintillator materials are widely used in the medical and industrial fields for imaging systems using gamma cameras. In this study, image evaluation is performed by modeling a gamma camera system based on a lutetium-yttrium oxyorthosilicate (LYSO) scintillation detector using a pinhole collimator that can improve the spatial resolution. A LYSO detector-based gamma camera system is modeled using a Monte Carlo simulation tool. The geometric concept of the pinhole collimator is designed using various magnification factors, and the spatial resolution is measured using the acquired source image. To evaluate the resolution, the full width at half maximum (FWHM) and natural image quality assessment (NIQE), a no-reference-based parameter, are used. We confirm that the FWHM and NIQE values decrease simultaneously when the diameter of the pinhole collimator increases. Additionally, we confirm that the spatial resolution improves as the magnification factor increases under the same pinhole diameter condition. Particularly, a 0.57 mm FWHM value is obtained using the modeled gamma camera system with a LYSO scintillation detector. In conclusion, our results demonstrate that a pinhole collimator with a LYSO scintillation detector is a promising gamma camera imaging system.