DOI QR코드

DOI QR Code

Spatial resolution and natural image quality assessment evaluation of gamma camera image using pinhole collimator in lutetium-yttrium oxyorthosilicate scintillation detector

  • Kyuseok Kim (Department of Radiological Science, College of Health Science, Gachon University) ;
  • Youngjin Lee (Department of Radiological Science, College of Health Science, Gachon University)
  • Received : 2023.03.01
  • Accepted : 2023.04.17
  • Published : 2023.07.25

Abstract

Scintillator materials are widely used in the medical and industrial fields for imaging systems using gamma cameras. In this study, image evaluation is performed by modeling a gamma camera system based on a lutetium-yttrium oxyorthosilicate (LYSO) scintillation detector using a pinhole collimator that can improve the spatial resolution. A LYSO detector-based gamma camera system is modeled using a Monte Carlo simulation tool. The geometric concept of the pinhole collimator is designed using various magnification factors, and the spatial resolution is measured using the acquired source image. To evaluate the resolution, the full width at half maximum (FWHM) and natural image quality assessment (NIQE), a no-reference-based parameter, are used. We confirm that the FWHM and NIQE values decrease simultaneously when the diameter of the pinhole collimator increases. Additionally, we confirm that the spatial resolution improves as the magnification factor increases under the same pinhole diameter condition. Particularly, a 0.57 mm FWHM value is obtained using the modeled gamma camera system with a LYSO scintillation detector. In conclusion, our results demonstrate that a pinhole collimator with a LYSO scintillation detector is a promising gamma camera imaging system.

Keywords

References

  1. H. Yoshitani, T. Fujibuchi, Y. Nakajima, Basic study of mobile gamma ray imaging using a digital camera and scintillator, Biomed. Phys. Eng. Express 7 (2021), 037001. 
  2. C.K. Kang, M.G. Song, J. Yang, H. Lee, Y.B. Lee, Severity evaluation of regional cerebrovascular reactivity in acute stroke patients using SPECT, Curr. Med. Imag. 18 (2022) 837-844.  https://doi.org/10.2174/1573405618666220103104726
  3. Y.B. Lee, C.K. Kang, Cerebrovascular reactivity assessment during carbon dioxide inhalation using SPECT, Appl. Sci. 11 (2021), https://doi.org/10.3390/app11031161. 
  4. T. Yamamoto, J.M. Kim, K.S. Lee, T. Takayama, T. Kitahara, Development of a new cardiac and torso phantom for verifying the accuracy of myocardial perfusion SPECT, J. Radiol. Sci. Technol. 31 (2008) 389-399. 
  5. K. Vetter, R. Barnowksi, A. Haefner, T.H.Y. Joshi, R. Pavlovsky, B.J. Quiter, Gamma-Ray imaging for nuclear security and safety: towards 3-D gamma-ray vision, Nucl. Instrum. Methods Phys. Res., Sect. A 878 (2018) 159-168.  https://doi.org/10.1016/j.nima.2017.08.040
  6. H.O. Anger, Scintillation camera with multichannel collimators, J. Nucl. Med. 5 (1964) 515-531. 
  7. I. Akkurt, K. Gunoglu, S.S. Arda, Detection efficiency of NaI(Tl) detector in 511e1332 keV energy range, Sci. Technol. Nuclear Installat. 2014 (2014), https://doi.org/10.1155/2014/186798. 
  8. Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322.  https://doi.org/10.3938/jkps.62.1317
  9. M.H. Lee, W.H. Shin, H. Lee, K. Kim, M.S. Yoo, M.K. Kim, S. Choi, B. Jo, Y. Lee, Feasibility study of pixel-matched parallel-hole collimator with a pixelated lutetium-yttrium oxyorthosilicate pre-clinical gamma camera system, J. Med. Imaging Health Inform. 6 (2016) 1238-1241.  https://doi.org/10.1166/jmihi.2016.1905
  10. K. Deprez, R.V. Holen, S. Vandenberghe, A high resolution SPECT detector based on thin continuous LYSO, Phys. Med. Biol. 59 (2014) 153-171.  https://doi.org/10.1088/0031-9155/59/1/153
  11. M.F. Smith, S. Majewski, A.G. Weisenberger, Optimizing pinhole and parallel hole collimation for scintimammography with compact pixellated detectors, IEEE Trans. Nucl. Sci. 50 (2003) 321-326.  https://doi.org/10.1109/TNS.2003.812436
  12. S.D. Metzler, R. Accorsi, Resolution- versus sensitivity-effective diameter in pinhole collimation: experimental verification, Phys. Med. Biol. 50 (2005) 5005-5017.  https://doi.org/10.1088/0031-9155/50/21/004
  13. A. Mittal, R. Soundararajan, A.C. Bovik, Making a "completely blind" image quality analyzer, IEEE Signal Process. Lett. 20 (2013) 209-212.  https://doi.org/10.1109/LSP.2012.2227726
  14. Y. Lee, Performance analysis of improved hybrid median filter applied to Xray computed tomography images obtained with high-resolution photon-counting CZT detector: a pilot study, Nucl. Eng. Technol. 54 (2022) 3380-3389.  https://doi.org/10.1016/j.net.2022.03.025
  15. M.H. Lee, C.S. Yun, K. Kim, Y. Lee, Image restoration algorithm incorporating methods to remove noise and blurring from positron emission tomography imaging for Alzheimer's disease diagnosis, Phys. Med. 103 (2022) 181-189.  https://doi.org/10.1016/j.ejmp.2022.10.016
  16. J. Bae, S. Bae, K. Lee, Y. Choi, Y. Kim, J. Joung, Design and performance investigation of a multi-pinhole collimator for a small field of view gamma imaging system, J. Kor. Phys. Soc. 64 (2014) 970-975.  https://doi.org/10.3938/jkps.64.970
  17. M.C. Goorden, M.C.M. Rentmeester, F.J. Beekman, Theoretical analysis of full-ring multi-pinhole brain SPECT, Phys. Med. Biol. 54 (2009) 6593-6610.  https://doi.org/10.1088/0031-9155/54/21/010
  18. J.K. Bae, S.B. Bae, K.S. Lee, Y.K. Kim, J.H. Joung, Development of unmatched system model for iterative image reconstruction for pinhole collimator of imaging systems in nuclear medicine, J. Radiol. Sci. Technol. 35 (2012) 353-360.