Browse > Article
http://dx.doi.org/10.12989/sem.2021.80.6.727

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method  

Benaoum, Abdelhak (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Abualnour, Moussa (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Houari, Mohammed Sid Ahmed (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de DjellaliLiabes)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Structural Engineering and Mechanics / v.80, no.6, 2021 , pp. 727-736 More about this Journal
Abstract
In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.
Keywords
forced nonlinear vibration; higher-order zig-zag theories; multiple scale method; perturbation method; sandwich beams; viscoelastic model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khanin, R., Cartmell, M. and Gilbert, A. (2000), "A computerised implementation of the multiple scales perturbation method using Mathematica", Compos. Struct., 76(5), 565-575. https://doi.org/10.1016/S0045-7949(99)00184-4.   DOI
2 Rao, D.K. (1978), "Frequency and loss factors of sandwich beams under various boundary conditions", J. Mech. Eng. Sci., 20(5), 271-282. https://doi.org/10.1243/JMES_JOUR_1978_020_047_02.   DOI
3 Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches'', Comptes Rendues des 13eme Journees Nationales sur les Composites, 13, 289-292.
4 Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.   DOI
5 Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., ... & Tounsi, A. (2020), "A new innovative 3-unknown HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.   DOI
6 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
7 Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.   DOI
8 Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.   DOI
9 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
10 Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.   DOI
11 Youzera, H. and Meftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.   DOI
12 Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A. and Bordas, S.P.A. (2021), "On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory", Compos. Struct., 279, 114715. https://doi.org/10.1016/j.compstruct.2021.114715.   DOI
13 Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.   DOI
14 Zinoviev, P.A. and Ermakov, Y.N. (1994), Energy Dissipation in Composite Materials, CRC Press.
15 Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.   DOI
16 Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.   DOI
17 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. http://doi.org/10.12989/cac.2019.24.6.489.   DOI
18 Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.   DOI
19 Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.   DOI
20 Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.   DOI
21 Belouettar, S., Azrar, L., Daya, E.M., Laptev, V. and Potier-Ferry, M. (2008), "Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach", Comput. Struct., 86(3-5), 386-397. https://doi.org/10.1016/j.compstruc.2007.02.009.   DOI
22 Bilasse, M., Daya, E.M. and Azrar, L. (2010), "Linear and nonlinear vibrations analysis of viscoelastic sandwich beams", J. Sound Vib., 329(23), 4950-4969. https://doi.org/10.1016/j.jsv.2010.06.012.   DOI
23 Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. (India): Ser. C, 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.   DOI
24 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
25 Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18. https://doi.org/10.1177/058310247700900205.   DOI
26 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.   DOI
27 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.   DOI
28 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
29 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
30 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
31 Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocomposite face sheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.   DOI
32 Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271(3-5), 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5.   DOI
33 Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.   DOI
34 Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.   DOI
35 Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
36 Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. https://doi.org/10.1177/002199836900300304.   DOI
37 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1177/002199836900300316.   DOI
38 Timoshenko, S.P. (1922), "X On the transverse vibrations of bars of uniform cross-section", London Edinburgh Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.   DOI
39 Youzera, H., Meftah, S.A. and Daya, E.M. (2017a), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5), 054503. https://doi.org/10.1115/1.4036914.   DOI
40 Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.   DOI
41 Moita, J.S., Araujo, A.L., Martins, P., Soares, C.M. and Soares, C.M. (2011), "A finite element model for the analysis of viscoelastic sandwich structures", Compos. Struct., 89(21-22), 1874-1881. https://doi.org/10.1016/j.compstruc.2011.05.008.   DOI
42 Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.   DOI
43 Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006.   DOI
44 Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.   DOI
45 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI