• Title/Summary/Keyword: Genes related growth

Search Result 550, Processing Time 0.031 seconds

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Anti-Cancer Effects and Apoptosis by Korean Medicinal Herbs

  • Ko Seong Gyu;Jun Chan Yong;Park Chong Hyeong;Bae Hyun Su
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.819-825
    • /
    • 2003
  • pharbitis nil and Taraxacum mongolicum are representative herbs that have been used for cancer treatment in Korean traditional medicine. To understand the molecular basis of the antitumor function, we analyzed the effect of these herbs on proliferation and apoptosis of tumor cells using a gastric cancer cell line AGS. Cell counting assay showed that pharbitis nil strongly inhibit cell proliferation Of AGS whereas Taraxacum mongolicum exhibit no detectable effect on cellular growth. [³H]thymidine uptake analysis also demonstrated that DNA replication of AGS is suppressed in a dose-dependent manner by treatment with pharbitis nil. Additionally, tryphan blue exclusion assay showed that Pharbitis nil induce apoptotic cell death of AGS in a dose-dependent. To explore whether anti antiproliferative and/or proapototic property of Pharbitis nil is associated with their effect on gene expression, we performed RT-PCR analysis of cell cycle- and apoptosis-related genes. Interestingly, mRNA expression levels of c-Jun, c-Fos, c-Myc, and Cyclin D1 were markedly reduced by Pharbitis nil. Taraxacum mongolicum also showed inhibitory action on expression of these growth-promoting protooncogene but there effects are less significant, as compared to Pharbitis nil. Furthermore, it was also found that Pharbitis nil activates expression of the p53 tumor suppressor and its downstream effector p21Waf1, which induce G1 cell cycle arrest and apoptosis. Collectively, our data demonstrate that Pharbitis nil induce growth inhibition and apoptosis of human gastric cancer cells and these effects are accompanied with down-and up-regulation of growth-regulating protooncogenes and tumor suppressor genes, respectively. This observation thus suggests that the anticancer effect of Pharbitis nil might be associated with its regulatory capability of tumor-related gene expression.

Screening Differential Expressions of Defense-related Responses in Cold-treated 'Kyoho' and 'Campbell Early' Grapevines

  • Ahn, Soon Young;Kim, Seon Ae;Han, Jae Hyun;Kim, Seung Heui;Yun, Hae Keun
    • 원예과학기술지
    • /
    • 제31권3호
    • /
    • pp.275-281
    • /
    • 2013
  • Low temperature is one of the major environmental factors that affect productivity including reduced growth and budding of vines, and changes of metabolic processes in grape (Vitis spp.). To screen the specific expression of abiotic stress-related genes against cold treatment in 'Kyoho' and 'Campbell Early' grapevines, expression of various defense-related genes was investigated by RT-PCR and real-time PCR. Among the 67 genes analyzed by RT-PCR and real-time PCR, 17 and 16 types of cDNA were up-regulated, while 5 and 6 types were down-regulated in cold-treated 'Kyoho' and 'Campbell Early' grapevines, respectively. Genes encoding carotene (Cart3564 and Cart4472), chalcone isomerase (CHI), cytochrome P450 (CYP), flavonol synthase (FLS), endo-${\beta}$-glucanase precursor (Glu), glutathione peroxidase (GPX), glutathione-S-transferase (GST), leucine-rich repeats (LRR), manganese superoxide dismutase (Mn-SOD), phenylalanine ammonia lyase (PAL), polygalacturonase-inhibiting protein (PGIP), proline rich protein 2 (PRP2), small heat shock protein (sHSP), temperature induced lipocalin (TIL), and thaumatin-like protein (TLP) were up-regulated, while those encoding CBF like transcription factor (CBF1), chitinase-like protein (CLP), cold induced protein (CIP), glycerol-3-phosphate acyltransferase (GPAT), and mitogen-activated protein kinase (MAPK) were down-regulated by low temperature treatment in both in 'Kyoho' and 'Campbell Early'.

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

  • Sadat, Md. Abu;Jeon, Junhyun;Mir, Albely Afifa;Kim, Seongbeom;Choi, Jaeyoung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.367-374
    • /
    • 2014
  • Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection.

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석 (Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system)

  • 박미정;이성복;이석원
    • 대한치과보철학회지
    • /
    • 제58권4호
    • /
    • pp.290-299
    • /
    • 2020
  • 목적: 본 연구에서는 나노방출제어시스템을 이용하여 trichloroacetic acid (TCA) 및 epidermal growth factor (EGF)를 인간치은섬유아세포에 적용하였을 때, 나타나는 액틴 세포골격과 관련된 유전자 발현의 변화 양상을 확인하고자 하였다. 재료 및 방법: TCA와 EGF가 조절방출될 수 있도록 만들어진 나노방출제어시스템을 이용하였다. 인간치은섬유아세포에 TCA만 적용된 군(EXP1), TCA와 EGF가 적용된 군(EXP2), 대조군(CON)의 3가지 군으로 나누어 48시간 배양하였다. Real-time PCR을 이용하여 액틴 세포골격과 관련된 유전자 26개의 발현 양상을 분석하였다. 피어슨상관관계분석을 통해 유전자들의 상관관계와 영향요인을 확인하였다. 결과: 액틴 세포골격과 관련된 유전자 26개 중 23개가 EXP1과 EXP2에서 상향조절되었고, 이 중 14개는 EXP1에 비하여 EXP2에서 유의미한 발현량 증가를 보였다. LPAR1은 EXP1에서만 하향조절되었고, GNA13은 EXP2에서만 상향조절되었고, F2R은 EXP2에서만 하향조절되었다. 액틴 단백질의 유전자 발현에 대하여 Rac1관련 유전자 중 3개와 CDC42가 가장 큰 영향요인으로 확인되었다. 결론: 인간치은섬유아세포의 액틴 세포골격 관련 유전자들은 나노방출제어시스템을 통하여 조절 방출된 TCA와 EGF에 의해 대부분 상향조절되었다.

어류 병원체 Edwardsiella piscicida의 OmpR은 생육과 병원성과 관련된 유전자의 발현에 필수적 (OmpR Is Essential for Growth and Expression of Virulence-related Genes in the Fish Pathogen Edwardsiella piscicida)

  • 듀르가 레이;김연하;최윤정;강호영
    • 생명과학회지
    • /
    • 제31권1호
    • /
    • pp.28-36
    • /
    • 2021
  • Edwardsiella piscicida는 어류의 출혈성 패혈증 및 사람의 위장 감염의 중요한 원인균이다. 세균이 생존을 하기 위해서는 환경변화에 적응하기 위한 특수한 메커니즘이 필요하다. 따라서 E. piscicida가 삼투압 변화 환경을 감지하고 이에 반응하는 메커니즘을 이해하기 위하여 본 연구에서는 다양한 염도 조건에서 단백질 발현 형태와 세균의 생리적 특성을 분석하였다. EnvZ-OmpR의 two-component 조절 시스템의 일부인 OmpR 단백질은 세균의 염분 스트레스 감지와 관련이 있다. 이 단백질이 E. piscicida에서 어떤 생리적 역할을 하는지는 밝혀지지 않고 있다. 이 연구에서는 염분 스트레스에 대한 OmpR 단백질의 기능을 조사 하였다. OmpR을 발현하지 못하는 돌연변이체를 분석한 결과 구연산염 이용, H2S 생성 및 인돌 생산의 능력이 야생형과 비교했을 때 차이가 나는 것으로 확인되었다. 전체 ompR 유전자를 가지는 플라스미드를 돌연변이 균주에 도입하여 분석한 결과 위의 세가지 표현형은 야생형과 같아졌다. 지연된 성장률도 부분적으로 회복되었음을 볼 수 있었다. 이 연구에서 OmpR이 세포 운동성과의 관련성을 찾아볼 수 없었다. 이 연구의 결과들을 종합하면, 돌연변이 분석, 성장 분석, MALDI-TOF MS, qRT-PCR 및 표현형 연구 결과는 E. piscicida의 OmpR이 삼투압 조절, 생육, 포린 발현, 독성 관련 유전자(eseC, eseD 및 evpC) (ETAE_1826) 및 기능을 알 수 없는 특정 유전자(ETAE_1540 및 ETAE_2706)와 관련이 있다고 사료된다.

The Effect of Stocking Density on Stress Related Genes and Telomeric Length in Broiler Chickens

  • Beloor, J.;Kang, H.K.;Kim, Y.J.;Subramani, V.K.;Jang, I.S.;Sohn, S.H.;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권4호
    • /
    • pp.437-443
    • /
    • 2010
  • To be economically profitable, the poultry industry demands an increase in stocking density, which could adversely affect chicken welfare. The current study was performed to investigate the effect of stocking density on stress-related, heat shock protein genes (HSP70 and HSP90), 3-hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) gene and telomere length in broiler chickens. Seven-day-old broiler chickens were housed at High (0.0578 $m^2$/bird), Standard (0.077 $m^2$/bird) and Low (0.116 $m^2$/bird) stocking densities with 8 replicates each until 35 d of age. The growth performance, such as body weight gain and average daily feed intake, was found to be significantly (p<0.05) higher in the Low density group, but these parameters did not show any difference between the High and Standard groups. Other growth performance, such as feed conversion ratio and final feed intake, showed no difference among the treated groups. The expression levels of HSP70 and HMGCR were found to be elevated with the increase of stocking density. The expression level of these genes was significantly (p<0.05) higher in the High density stocked group compared with the other groups, whereas the expression levels were not significantly different between the Low and Standard groups. The expression levels of HSP90 did not show any significant changes among the treated groups. The telomeric length of the birds housed in High density was reduced significantly (p<0.05) when compared to that of the birds in Low density. These results clearly indicate that birds stocked at high density show physiological adaptive changes indicative of stress at gene transcriptional and telomere levels.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.