DOI QR코드

DOI QR Code

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

  • Sadat, Md. Abu (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jeon, Junhyun (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Mir, Albely Afifa (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Seongbeom (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Jaeyoung (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.08.01
  • Accepted : 2014.08.29
  • Published : 2014.12.01

Abstract

Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection.

Keywords

References

  1. Alba, M. M. and Castresana, J. 2007. On homology searches by protein Blast and the characterization of the age of genes. BMC Evol. Biol. 7:53. https://doi.org/10.1186/1471-2148-7-53
  2. Begun, D. J., Lindfors, H. A., Kern, A. D. and Jones, C. D. 2007. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/ Drosophila erecta clade. Genetics 176:1131-1137.
  3. Cai, J., Zhao, R. P., Jiang, H. F. and Wang, W. 2008. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179:487-496. https://doi.org/10.1534/genetics.107.084491
  4. Carvunis, A. R., Rolland, T., Wapinski, I., Calderwood, M. A., Yildirim, M. A., Simonis, N., Charloteaux, B., Hidalgo, C. A., Barbette, J., Santhanam, B., Brar, G. A., Weissman, J. S., Regev, A., Thierry-Mieg, N., Cusick, M. E. and Vidal, M. 2012. Proto-genes and de novo gene birth. Nature 487:370-374. https://doi.org/10.1038/nature11184
  5. Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  6. Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G. W., Kang, S., Kim, S., Lee, Y. W. and Lee, Y. H. 2013. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 41:D714-D719. https://doi.org/10.1093/nar/gks1163
  7. Conant, G. C. and Wolfe, K. H. 2008. Turning a hobby into a job: How duplicated genes find new functions. Nature Rev. Genet. 9:938-950. https://doi.org/10.1038/nrg2482
  8. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H. Q., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W. X., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986. https://doi.org/10.1038/nature03449
  9. Ding, Y., Zhao, L., Yang, S. A., Jiang, Y., Chen, Y. A., Zhao, R. P., Zhang, Y., Zhang, G. J., Dong, Y., Yu, H. J., Zhou, Q. and Wang, W. 2010. A Young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Ylinked male fertility genes. PLoS Genet. 6:e1001255. https://doi.org/10.1371/journal.pgen.1001255
  10. Domazet-Loso, T. and Tautz, D. 2003. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 13:2213-2219. https://doi.org/10.1101/gr.1311003
  11. Donoghue, M. T. A., Keshavaiah, C., Swamidatta, S. H. and Spillane, C. 2011. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol. 11:47. https://doi.org/10.1186/1471-2148-11-47
  12. Ekman, D. and Elofsson, A. 2010. Identifying and quantifying orphan protein sequences in fungi. J. Mol. Biol. 396:396-405. https://doi.org/10.1016/j.jmb.2009.11.053
  13. Goff, S. A. 2005. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 309:879-879.
  14. Heinen, T. J. A. J., Staubach, F., Haming, D. and Tautz, D. 2009. Emergence of a new gene from an intergenic region. Curr. Biol. 19:1527-1531. https://doi.org/10.1016/j.cub.2009.07.049
  15. Jansen, R. and Gerstein, M. 2000. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res. 28:1481-1488. https://doi.org/10.1093/nar/28.6.1481
  16. Kaessmann, H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20:1313-1326. https://doi.org/10.1101/gr.101386.109
  17. Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. and Bosch, T. C. G. 2009. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25:404-413. https://doi.org/10.1016/j.tig.2009.07.006
  18. Kim, H. J., Han, J. H., Kim, K. S. and Lee, Y. H. 2014. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet. Biol. 66:33-43. https://doi.org/10.1016/j.fgb.2014.02.011
  19. Kim, S., Park, J., Park, S. Y., Mitchell, T. K. and Lee, Y. H. 2010. Identification and analysis of in planta expressed genes of Magnaporthe oryzae. BMC Genomics 11:104. https://doi.org/10.1186/1471-2164-11-104
  20. Knowles, D. G. and McLysaght, A. 2009. Recent de novo origin of human protein-coding genes. Genome Res. 19:1752-1759. https://doi.org/10.1101/gr.095026.109
  21. Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A. and Begun, D. J. 2006. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl. Acad. Sci. USA 103:9935-9939. https://doi.org/10.1073/pnas.0509809103
  22. Li, C. Y., Zhang, Y., Wang, Z. B., Zhang, Y., Cao, C. M., Zhang, P. W., Lu, S. J., Li, X. M., Yu, Q., Zheng, X. F., Du, Q., Uhl, G. R., Liu, Q. R. and Wei, L. P. 2010a. A human-specific de novo protein-coding gene gssociated with human brain functions. PLoS Comput. Biol. 6:e1000734. https://doi.org/10.1371/journal.pcbi.1000734
  23. Li, D., Dong, Y., Jiang, Y., Jiang, H. F., Cai, J. and Wang, W. 2010b. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 20:408-420. https://doi.org/10.1038/cr.2010.31
  24. Li, L., Ding, S. L., Sharon, A., Orbach, M. and Xu, J. R. 2007. Mir1 is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. Mol. Plant-Microbe Interact. 20:448-458. https://doi.org/10.1094/MPMI-20-4-0448
  25. Lynch, M. and Katju, V. 2004. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20:544-549. https://doi.org/10.1016/j.tig.2004.09.001
  26. Martin, R., Moran, G. P., Jacobsen, I. D., Heyken, A., Domey, J., Sullivan, D. J., Kurzai, O. and Hube, B. 2011. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS ONE 6:e18394. https://doi.org/10.1371/journal.pone.0018394
  27. Neme, R. and Tautz, D. 2013. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14:117. https://doi.org/10.1186/1471-2164-14-117
  28. Palmieri, N., Kosiol, C. and Schlotterer, C. 2014. The life cycle of Drosophila orphan genes. eLife 3:e01311.
  29. Park, S. Y., Chi, M. H., Milgroom, M. G., Kim, H., Han, S. S., Kang, S. and Lee, Y. H. 2010. Genetic stability of Magnaporthe oryzae during successive passages through rice plants and on artificial medium. Plant Pathol. J. 26:313-320. https://doi.org/10.5423/PPJ.2010.26.4.313
  30. Pozzoli, U., Menozzi, G., Fumagalli, M., Cereda, M., Comi, G. P., Cagliani, R., Bresolin, N. and Sironi, M. 2008. Both selective and neutral processes drive GC content evolution in the human genome. BMC Evol. Biol. 8:99. https://doi.org/10.1186/1471-2148-8-99
  31. Pruitt, K. D., Tatusova, T. and Maglott, D. R. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61-D65. https://doi.org/10.1093/nar/gkl842
  32. Sambrook J. and Russell D. W. (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  33. Siepel, A. 2009. Darwinian alchemy: Human genes from noncoding DNA. Genome Res. 19:1693-1695. https://doi.org/10.1101/gr.098376.109
  34. Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  35. Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of Mpg1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590. https://doi.org/10.1105/tpc.5.11.1575
  36. Tautz, D. and Domazet-Loso, T. 2011. The evolutionary origin of orphan genes. Nature Rev. Genet. 12:692-702.
  37. Valent, B. and Chumley, F. G. 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443-467. https://doi.org/10.1146/annurev.py.29.090191.002303
  38. Valent, B., Farrall, L. and Chumley, F. G. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87-101.
  39. Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Rev. Microbiol. 7:185-195. https://doi.org/10.1038/nrmicro2032
  40. Yang, Z. F. and Huang, J. L. 2011. De novo origin of new genes with introns in Plasmodium vivax. FEBS Lett. 585:641-644. https://doi.org/10.1016/j.febslet.2011.01.017
  41. Yu, J., Hu, S. N., Wang, J., Wong, G. K. S., Li, S. G., Liu, B., Deng, Y. J., Dai, L., Zhou, Y., Zhang, X. Q., Cao, M. L., Liu, J., Sun, J. D., Tang, J. B., Chen, Y. J., Huang, X. B., Lin, W., Ye, C., Tong, W., Cong, L. J., Geng, J. N., Han, Y. J., Li, L., Li, W., Hu, G. Q., Huang, X. G., Li, W. J., Li, J., Liu, Z. W., Li, L., Liu, J. P., Qi, Q. H., Liu, J. S., Li, L., Li, T., Wang, X. G., Lu, H., Wu, T. T., Zhu, M., Ni, P. X., Han, H., Dong, W., Ren, X. Y., Feng, X. L., Cui, P., Li, X. R., Wang, H., Xu, X., Zhai, W. X., Xu, Z., Zhang, J. S., He, S. J., Zhang, J. G., Xu, J. C., Zhang, K. L., Zheng, X. W., Dong, J. H., Zeng, W. Y., Tao, L., Ye, J., Tan, J., Ren, X. D., Chen, X. W., He, J., Liu, D. F., Tian, W., Tian, C. G., Xia, H. G., Bao, Q. Y., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W. M., Li, P., Chen, W., Wang, X. D., Zhang, Y., Hu, J. F., Wang, J., Liu, S., Yang, J., Zhang, G. Y., Xiong, Y. Q., Li, Z. J., Mao, L., Zhou, C. S., Zhu, Z., Chen, R. S., Hao, B. L., Zheng, W. M., Chen, S. Y., Guo, W., Li, G. J., Liu, S. Q., Tao, M., Wang, J., Zhu, L. H., Yuan, L. P. and Yang, H. M. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92. https://doi.org/10.1126/science.1068037
  42. Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  43. Zhou, Q., Zhang, G. J., Zhang, Y., Xu, S. Y., Zhao, R. P., Zhan, Z. B., Li, X., Ding, Y., Yang, S. A. and Wang, W. 2008. On the origin of new genes in Drosophila. Genome Res. 18:1446-1455. https://doi.org/10.1101/gr.076588.108

Cited by

  1. Genomic Insights into the Rice Blast Fungus through Estimation of Gene Emergence Time in Phylogenetic Context vol.46, pp.4, 2018, https://doi.org/10.1080/12298093.2018.1542970