Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2014.0072

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae  

Sadat, Md. Abu (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Jeon, Junhyun (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Mir, Albely Afifa (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Kim, Seongbeom (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Choi, Jaeyoung (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Lee, Yong-Hwan (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Publication Information
The Plant Pathology Journal / v.30, no.4, 2014 , pp. 367-374 More about this Journal
Abstract
Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection.
Keywords
fungal pathogenesis; gene birth; Magnaporthe oryzae; orphan gene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G. W., Kang, S., Kim, S., Lee, Y. W. and Lee, Y. H. 2013. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 41:D714-D719.   DOI   ScienceOn
2 Alba, M. M. and Castresana, J. 2007. On homology searches by protein Blast and the characterization of the age of genes. BMC Evol. Biol. 7:53.   DOI   ScienceOn
3 Begun, D. J., Lindfors, H. A., Kern, A. D. and Jones, C. D. 2007. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/ Drosophila erecta clade. Genetics 176:1131-1137.
4 Cai, J., Zhao, R. P., Jiang, H. F. and Wang, W. 2008. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179:487-496.   DOI   ScienceOn
5 Carvunis, A. R., Rolland, T., Wapinski, I., Calderwood, M. A., Yildirim, M. A., Simonis, N., Charloteaux, B., Hidalgo, C. A., Barbette, J., Santhanam, B., Brar, G. A., Weissman, J. S., Regev, A., Thierry-Mieg, N., Cusick, M. E. and Vidal, M. 2012. Proto-genes and de novo gene birth. Nature 487:370-374.   DOI   ScienceOn
6 Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI   ScienceOn
7 Conant, G. C. and Wolfe, K. H. 2008. Turning a hobby into a job: How duplicated genes find new functions. Nature Rev. Genet. 9:938-950.   DOI   ScienceOn
8 Ekman, D. and Elofsson, A. 2010. Identifying and quantifying orphan protein sequences in fungi. J. Mol. Biol. 396:396-405.   DOI   ScienceOn
9 Ding, Y., Zhao, L., Yang, S. A., Jiang, Y., Chen, Y. A., Zhao, R. P., Zhang, Y., Zhang, G. J., Dong, Y., Yu, H. J., Zhou, Q. and Wang, W. 2010. A Young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Ylinked male fertility genes. PLoS Genet. 6:e1001255.   DOI   ScienceOn
10 Domazet-Loso, T. and Tautz, D. 2003. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 13:2213-2219.   DOI   ScienceOn
11 Donoghue, M. T. A., Keshavaiah, C., Swamidatta, S. H. and Spillane, C. 2011. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol. 11:47.   DOI   ScienceOn
12 Goff, S. A. 2005. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 309:879-879.
13 Heinen, T. J. A. J., Staubach, F., Haming, D. and Tautz, D. 2009. Emergence of a new gene from an intergenic region. Curr. Biol. 19:1527-1531.   DOI   ScienceOn
14 Jansen, R. and Gerstein, M. 2000. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res. 28:1481-1488.   DOI   ScienceOn
15 Kaessmann, H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20:1313-1326.   DOI
16 Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. and Bosch, T. C. G. 2009. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25:404-413.   DOI   ScienceOn
17 Knowles, D. G. and McLysaght, A. 2009. Recent de novo origin of human protein-coding genes. Genome Res. 19:1752-1759.   DOI   ScienceOn
18 Kim, H. J., Han, J. H., Kim, K. S. and Lee, Y. H. 2014. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet. Biol. 66:33-43.   DOI   ScienceOn
19 Li, C. Y., Zhang, Y., Wang, Z. B., Zhang, Y., Cao, C. M., Zhang, P. W., Lu, S. J., Li, X. M., Yu, Q., Zheng, X. F., Du, Q., Uhl, G. R., Liu, Q. R. and Wei, L. P. 2010a. A human-specific de novo protein-coding gene gssociated with human brain functions. PLoS Comput. Biol. 6:e1000734.   DOI   ScienceOn
20 Kim, S., Park, J., Park, S. Y., Mitchell, T. K. and Lee, Y. H. 2010. Identification and analysis of in planta expressed genes of Magnaporthe oryzae. BMC Genomics 11:104.   DOI   ScienceOn
21 Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A. and Begun, D. J. 2006. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl. Acad. Sci. USA 103:9935-9939.   DOI   ScienceOn
22 Li, D., Dong, Y., Jiang, Y., Jiang, H. F., Cai, J. and Wang, W. 2010b. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 20:408-420.   DOI   ScienceOn
23 Li, L., Ding, S. L., Sharon, A., Orbach, M. and Xu, J. R. 2007. Mir1 is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. Mol. Plant-Microbe Interact. 20:448-458.   DOI   ScienceOn
24 Lynch, M. and Katju, V. 2004. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20:544-549.   DOI   ScienceOn
25 Palmieri, N., Kosiol, C. and Schlotterer, C. 2014. The life cycle of Drosophila orphan genes. eLife 3:e01311.
26 Martin, R., Moran, G. P., Jacobsen, I. D., Heyken, A., Domey, J., Sullivan, D. J., Kurzai, O. and Hube, B. 2011. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS ONE 6:e18394.   DOI   ScienceOn
27 Neme, R. and Tautz, D. 2013. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14:117.   DOI
28 Pruitt, K. D., Tatusova, T. and Maglott, D. R. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61-D65.   DOI   ScienceOn
29 Park, S. Y., Chi, M. H., Milgroom, M. G., Kim, H., Han, S. S., Kang, S. and Lee, Y. H. 2010. Genetic stability of Magnaporthe oryzae during successive passages through rice plants and on artificial medium. Plant Pathol. J. 26:313-320.   과학기술학회마을   DOI   ScienceOn
30 Pozzoli, U., Menozzi, G., Fumagalli, M., Cereda, M., Comi, G. P., Cagliani, R., Bresolin, N. and Sironi, M. 2008. Both selective and neutral processes drive GC content evolution in the human genome. BMC Evol. Biol. 8:99.   DOI   ScienceOn
31 Sambrook J. and Russell D. W. (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
32 Siepel, A. 2009. Darwinian alchemy: Human genes from noncoding DNA. Genome Res. 19:1693-1695.   DOI   ScienceOn
33 Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202.   DOI   ScienceOn
34 Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981.   DOI   ScienceOn
35 Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of Mpg1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590.   DOI   ScienceOn
36 Tautz, D. and Domazet-Loso, T. 2011. The evolutionary origin of orphan genes. Nature Rev. Genet. 12:692-702.
37 Valent, B., Farrall, L. and Chumley, F. G. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87-101.
38 Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Rev. Microbiol. 7:185-195.   DOI   ScienceOn
39 Yang, Z. F. and Huang, J. L. 2011. De novo origin of new genes with introns in Plasmodium vivax. FEBS Lett. 585:641-644.   DOI   ScienceOn
40 Zhou, Q., Zhang, G. J., Zhang, Y., Xu, S. Y., Zhao, R. P., Zhan, Z. B., Li, X., Ding, Y., Yang, S. A. and Wang, W. 2008. On the origin of new genes in Drosophila. Genome Res. 18:1446-1455.   DOI   ScienceOn
41 Yu, J., Hu, S. N., Wang, J., Wong, G. K. S., Li, S. G., Liu, B., Deng, Y. J., Dai, L., Zhou, Y., Zhang, X. Q., Cao, M. L., Liu, J., Sun, J. D., Tang, J. B., Chen, Y. J., Huang, X. B., Lin, W., Ye, C., Tong, W., Cong, L. J., Geng, J. N., Han, Y. J., Li, L., Li, W., Hu, G. Q., Huang, X. G., Li, W. J., Li, J., Liu, Z. W., Li, L., Liu, J. P., Qi, Q. H., Liu, J. S., Li, L., Li, T., Wang, X. G., Lu, H., Wu, T. T., Zhu, M., Ni, P. X., Han, H., Dong, W., Ren, X. Y., Feng, X. L., Cui, P., Li, X. R., Wang, H., Xu, X., Zhai, W. X., Xu, Z., Zhang, J. S., He, S. J., Zhang, J. G., Xu, J. C., Zhang, K. L., Zheng, X. W., Dong, J. H., Zeng, W. Y., Tao, L., Ye, J., Tan, J., Ren, X. D., Chen, X. W., He, J., Liu, D. F., Tian, W., Tian, C. G., Xia, H. G., Bao, Q. Y., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W. M., Li, P., Chen, W., Wang, X. D., Zhang, Y., Hu, J. F., Wang, J., Liu, S., Yang, J., Zhang, G. Y., Xiong, Y. Q., Li, Z. J., Mao, L., Zhou, C. S., Zhu, Z., Chen, R. S., Hao, B. L., Zheng, W. M., Chen, S. Y., Guo, W., Li, G. J., Liu, S. Q., Tao, M., Wang, J., Zhu, L. H., Yuan, L. P. and Yang, H. M. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92.   DOI   ScienceOn
42 Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H. Q., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W. X., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986.   DOI   ScienceOn
43 Valent, B. and Chumley, F. G. 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443-467.   DOI   ScienceOn