DOI QR코드

DOI QR Code

Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system

나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석

  • Park, Mi Jeong (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Leesungbok, Richard (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Suk Won (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University)
  • 박미정 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실) ;
  • 이성복 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실) ;
  • 이석원 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실)
  • Received : 2020.04.22
  • Accepted : 2020.08.06
  • Published : 2020.10.30

Abstract

Purpose: Here, we verified that the actin cytoskeletal gene expression of human gingival fibroblasts was altered by the administration of trichloroacetic acid (TCA) and epidermal growth factor (EGF) using the nano-controlled releasing system. Materials and methods: The control and experimental groups were divided into 3 groups: the group with the TCA-only nano-controlled releasing system (EXP1), the group with the TCA- and EGF nano-controlled releasing system (EXP2), and the control group (CON) with 48-h incubation. Expression of 26 genes involved in the regulation of actin cytoskeleton were analyzed by real-time PCR followed by the determination of correlations and influential factors using the Pearson correlation analysis and multiple regression analysis. Results: Among 23 genes upregulated in EXP1 and EXP2, expression of 14 genes were significantly increased in EXP2 compared to EXP1. On the other hand, LPAR1 was downregulated only in EXP1, GNA13 was upregulated only in EXP2, and F2R was downregulated only in EXP2. Three Rac1-related genes and CDC42 were identified as the influential factors of the actin gene upregulation. Conclusion: The actin cytoskeleton genes in human gingival fibroblast were upregulated by the administration of TCA and EGF using HGC-based nano-controlled releasing system.

목적: 본 연구에서는 나노방출제어시스템을 이용하여 trichloroacetic acid (TCA) 및 epidermal growth factor (EGF)를 인간치은섬유아세포에 적용하였을 때, 나타나는 액틴 세포골격과 관련된 유전자 발현의 변화 양상을 확인하고자 하였다. 재료 및 방법: TCA와 EGF가 조절방출될 수 있도록 만들어진 나노방출제어시스템을 이용하였다. 인간치은섬유아세포에 TCA만 적용된 군(EXP1), TCA와 EGF가 적용된 군(EXP2), 대조군(CON)의 3가지 군으로 나누어 48시간 배양하였다. Real-time PCR을 이용하여 액틴 세포골격과 관련된 유전자 26개의 발현 양상을 분석하였다. 피어슨상관관계분석을 통해 유전자들의 상관관계와 영향요인을 확인하였다. 결과: 액틴 세포골격과 관련된 유전자 26개 중 23개가 EXP1과 EXP2에서 상향조절되었고, 이 중 14개는 EXP1에 비하여 EXP2에서 유의미한 발현량 증가를 보였다. LPAR1은 EXP1에서만 하향조절되었고, GNA13은 EXP2에서만 상향조절되었고, F2R은 EXP2에서만 하향조절되었다. 액틴 단백질의 유전자 발현에 대하여 Rac1관련 유전자 중 3개와 CDC42가 가장 큰 영향요인으로 확인되었다. 결론: 인간치은섬유아세포의 액틴 세포골격 관련 유전자들은 나노방출제어시스템을 통하여 조절 방출된 TCA와 EGF에 의해 대부분 상향조절되었다.

Keywords

References

  1. Hardin J, Bertoni G, Kleinsmith LJ. Becker's World of the cell. 8th ed. New York: Pearson; 2015. p. 422-46.
  2. Fishkind DJ, Wang YL. New horizons for cytokinesis. Curr Opin Cell Biol 1995;7:23-31. https://doi.org/10.1016/0955-0674(95)80041-7
  3. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509-14. https://doi.org/10.1126/science.279.5350.509
  4. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001;11:471-7. https://doi.org/10.1016/S0962-8924(01)02153-5
  5. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629-35. https://doi.org/10.1038/nature01148
  6. Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996;87:519-29. https://doi.org/10.1016/S0092-8674(00)81371-9
  7. Lee JB, Chung WG, Kwahck H, Lee KH. Focal treatment of acne scars with trichloroacetic acid: chemical reconstruction of skin scars method. Dermatol Surg 2002;28:1017-21. https://doi.org/10.1046/j.1524-4725.2002.02095.x
  8. Yasar S, Mansur AT, Serdar ZA, Goktay F, Aslan C. Treatment of focal epithelial hyperplasia with topical imiquimod: report of three cases. Pediatr Dermatol 2009;26:465-8. https://doi.org/10.1111/j.1525-1470.2009.00954.x
  9. Heithersay GS, Wilson DF. Tissue responses in the rat to trichloracetic acid-an agent used in the treatment of invasive cervical resorption. Aust Dent J 1988;33:451-61. https://doi.org/10.1111/j.1834-7819.1988.tb05849.x
  10. Park KM. A study based on sequential tissue coagulationproliferation nano controlled release system for oral soft tissue regeneration. Master's thesis. Department of Dentistry, Graduate School, Kyung Hee University. 2019.
  11. Lee K. Evaluation of the effect on oral soft tissue regeneration of the trichloroacetic acid in cellular models-a gene expression profiling study, Master's thesis. Department of Dentistry, Graduate School, Kyung Hee University. 2018.
  12. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factorinduced membrane ruffling. Cell 1992;70:401-10. https://doi.org/10.1016/0092-8674(92)90164-8
  13. Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K, Imamura S, Narumiya S. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 1993;8:1449-55.
  14. Caruz A, Samsom M, Alonso JM, Alcami J, Baleux F, Virelizier JL, Parmentier M, Arenzana-Seisdedos F. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett 1998;426:271-8. https://doi.org/10.1016/S0014-5793(98)00359-7
  15. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56:615-49. https://doi.org/10.1146/annurev.bi.56.070187.003151
  16. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998;280(5372):2109-11. https://doi.org/10.1126/science.280.5372.2109
  17. Kiss C, Li J, Szeles A, Gizatullin RZ, Kashuba VI, Lushnikova T, Protopopov AI, Kelve M, Kiss H, Kholodnyuk ID, Imreh S, Klein G, Zabarovsky ER. Assignment of the ARHA and GPX1 genes to human chromosome bands 3p21.3 by in situ hybridization and with somatic cell hybrids. Cytogenet Cell Genet 1997;79:228-30. https://doi.org/10.1159/000134729
  18. Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012;13:900-8. https://doi.org/10.1038/embor.2012.127
  19. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010;50:157-86. https://doi.org/10.1146/annurev.pharmtox.010909.105753
  20. Yue R, Li H, Liu H, Li Y, Wei B, Gao G, Jin Y, Liu T, Wei L, Du J, Pei G. Thrombin receptor regulates hematopoiesis and endothelial-to-hematopoietic transition. Dev Cell 2012;22:1092-100. https://doi.org/10.1016/j.devcel.2012.01.025
  21. Webb GC, Jenkins NA, Largaespada DA, Copeland NG, Fernandez CS, Bowtell DD. Mammalian homologues of the Drosophila Son of sevenless gene map to murine chromosomes 17 and 12 and to human chromosomes 2 and 14, respectively. Genomics 1993;18:14-9. https://doi.org/10.1006/geno.1993.1421
  22. Goodsell DS. The molecular perspective: the ras oncogene. Oncologist 1999;4:263-4. https://doi.org/10.1634/theoncologist.4-3-263
  23. Tsuchida N, Ryder T, Ohtsubo E. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 1982;217:937-9. https://doi.org/10.1126/science.6287573
  24. Hu P, Mondino A, Skolnik EY, Schlessinger J. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 1993;13:7677-88. https://doi.org/10.1128/MCB.13.12.7677
  25. Chan KT, Cortesio CL, Huttenlocher A. FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 2009;185:357-70. https://doi.org/10.1083/jcb.200809110
  26. Janostiak R, Pataki AC, Brabek J, Rosel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 2014;93:445-54. https://doi.org/10.1016/j.ejcb.2014.07.002
  27. Mayer BJ, Hanafusa H. Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity. Proc Natl Acad Sci USA 1990;87:2638-42. https://doi.org/10.1073/pnas.87.7.2638
  28. Meller N, Merlot S, Guda C. CZH proteins: a new family of Rho-GEFs. J Cell Sci 2005;118:4937-46. https://doi.org/10.1242/jcs.02671
  29. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, Kossenkov AV, Showe LC, Liu Q, Vachani A, Albelda SM, Kissil JL. The Rac1 splice form Rac1b promotes K-rasinduced lung tumorigenesis. Oncogene 2013;32:903-9. https://doi.org/10.1038/onc.2012.99
  30. Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher- Goppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S. Transcriptome 3'end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun 2018;9:5331. https://doi.org/10.1038/s41467-018-07580-5
  31. Egorov MV, Capestrano M, Vorontsova OA, Di Pentima A, Egorova AV, Mariggio S, Ayala MI, Tete S, Gorski JL, Luini A, Buccione R, Polishchuk RS. Faciogenital dysplasia protein (FGD1) regulates export of cargo proteins from the golgi complex via Cdc42 activation. Mol Biol Cell 2009;20:2413-27. https://doi.org/10.1091/mbc.e08-11-1136
  32. Qadir MI, Parveen A, Ali M. Cdc42: Role in cancer management. Chem Biol Drug Des 2015;86:432-9. https://doi.org/10.1111/cbdd.12556
  33. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015;128:2009-19. https://doi.org/10.1242/jcs.165563