Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.1.28

OmpR Is Essential for Growth and Expression of Virulence-related Genes in the Fish Pathogen Edwardsiella piscicida  

Ray, Durga (Department of Microbiology, Pusan National University)
Kim, Yeon Ha (Department of Integrated Biological Science, Pusan National University)
Choe, unjeong (Daegu-Gyeongbuk Medical Innovation Foundation)
Kang, Ho Young (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.31, no.1, 2021 , pp. 28-36 More about this Journal
Abstract
Edwardsiella piscicida is a significant cause of hemorrhagic septicemia in fish and gastrointestinal infections in humans. Survival bacteria require specialized mechanisms to adapt to environmental fluctuations. Hence, to understand the mechanism through which E. piscicida senses and responds to environmental osmolarity changes, we determined the protein expression profile and physiological properties under various salinity conditions in this study. The OmpR protein is a part of the Env-ZOmpR two-component system that has been implicated in sensing salt stress in bacteria. However, the physiological role played by this protein in E. piscicida remains to be elucidated. Therefore, in this work, the function of the OmpR protein in response to salt stress was investigated. Phenotypic analysis revealed that, in the mutant, three of the biochemical phenotypes were different from the wild type, including, citrate utilization, hydrogen sulfide, and indole production. Introduction of the plasmid containing the entire ompR gene to the mutant strain returned it to its parental phenotype. The retarded growth rate also partially recovered. Furthermore, in our studies, OmpR was not found to be related to cell motility. Taken together, our results from the mutational analysis, the growth assay, MALDI-TOF MS, qRT-PCR, and the phenotype studies suggest that the OmpR of E. piscicida is implicated in osmoregulation, growth, expression of porins (ETAE_1826), virulence-related genes (EseC, EseD and EvpC), and certain genes of unknown function (ETAE_1540 and ETAE_2706).
Keywords
Edwardsiella piscicida; ompR regulator; salinity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cai, S. J. and Inouye, M. 2002. EnvZ-OmpR Interaction and Osmoregulation in Escherichia coli. J. Biol. Chem. 277, 24155-24161.   DOI
2 Choe, Y., Park, J., Yu, J. E., Oh, J. I., Kim, S. and Kang, H. Y. 2017. Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. Fish Shellfish Immunol. 68, 43-250.
3 Griffin, M. J., Ware, C., Quiniou, S. M., Steadman, J. M., Gaunt, P. S., Khoo, L. H. and Soto, E. 2014. Edwardsiella piscicida identified in the Southeastern USA by gyrB sequence, species-specific and repetitive sequence-mediated PCR. Dis. Aquat. Organ. 108, 23-35.   DOI
4 He, Y., Xu, T., Fossheim, L. E. and Zhang, X. H. 2012. FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One 7, e45070.   DOI
5 Yu, J. E., Cho, M. Y., Kim, J. W. and Kang, H. Y. 2012. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb. Pathogs. 52, 259-266.   DOI
6 Tan, Y. P., Zheng, J., Tung, S. L., Rosenshine, I. and Leung, K. Y. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151, 2301-2313.   DOI
7 Yaakop, A. S., Chan, K. G., Ee, R., Lim, Y. L., Lee, S. K., Manan, F. A. and Goh, K. M. 2016. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses. Sci. Rep. 6, 33660.   DOI
8 Yang, Q., Pan, Y. L., Wang, K. Y., Wang, J., He, Y., Wang, E. L., Liu, T., Yi, G., Chen, D. F. and Huang, X. L. 2016. OmpN, outer membrane proteins of Edwardsiella ictaluri are potential vaccine candidates for channel catfish (Ictalurus punctatus). Mol. Immunol. 78, 1-8.   DOI
9 Yuan, J., Wei, B., Shi, M. and Gao, H. 2011. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis. PLoS One 6, e23701.   DOI
10 Dehghani, B., Mottamedifar, M., Khoshkharam-Roodmajani, H., Hassanzadeh, A., Zomorrodian, K. and Rahimi, A. 2016. SDS-PAGE analysis of the outer membrane proteins of uropathogenic Escherichia coli isolated from patients in different wards of Nemazee Hospital, Shiraz,Iran. Iran. J. Med. Sci. 41, 399-405.
11 Dehio, C., Gray-Owen, S. D. and Meyer, T. F. 1998. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6, 489-495.   DOI
12 Dorman, C. J. 1991. DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect. Immun. 59, 745-749.   DOI
13 Edwards, R. A., Keller, L. H. and Schifferli, D. M. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149-157.   DOI
14 Fang, F. C., Frawley, E. R., Tapscott, T. and Vázquez-Torres, A. 2016. Bacterial stress responses during host infection. Cell Host Microbe. 20, 133-143.   DOI
15 Gauthier, A., Robertson, M. L., Lowden, M., Ibarra, J. A., Puente, J. L. and Finlay, B. B. 2005. Transcriptional inhibitor of virulence factors in enteropathogenic Escherichia coli. Antimicrob. Agents Chemother. 49, 4101-4109.   DOI
16 Roland, K., Curtiss, R. and Sizemore, D. 1999. Construction and evaluation of a Δcya Δcrp Salmonella Typhimurium strain expressing Avian Pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43, 429-441.   DOI
17 Li, H., Zhu, Q-F., Peng, X-X. and Peng, B. 2017. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response. Sci. Rep. 7, 39824.   DOI
18 Park, S. B., Aoki, T. and Jung, T. S. 2012. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet. Res. 43, 67.   DOI
19 Pratt, L. A., Hsing, W., Gibson, K. E. and Silhavy, T. J. 1996. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol. Microbiol. 20, 911-917.   DOI
20 Rao, P. S., Yamada,Y., Tan, Y. P. and Leung, K. Y. 2004. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53, 573-586.   DOI
21 Sambrook, J. 2001. Molecular cloning : a laboratory manual, Third edition. Cold Spring Harbor, N. Y. : Cold Spring Harbor Laboratory Press, ©20012001.
22 Sato, M., Machida, K., Arikado, E., Saito, H., Kakegawa, T. and Kobayashi, H. 2000. Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microb. 66, 943-947.   DOI
23 Shimada, T., Takada, H., Yamamoto, K. and Ishihama, A. 2015. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells 20, 915-931.   DOI
24 Shin, S. and Park, C. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177, 4696-4702.   DOI
25 Brooks, A. N., Turkarslan, S., Beer, K. D., Lo, F. Y. and Baliga, N. S. 2011. Adaptation of cells to new environments. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 544-561.   DOI
26 Martinez-Hackert, E. and Stock, A. M. 1997. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5, 109-124.   DOI
27 Mohanty, B. R. and Sahoo, P. K. 2007. Edwardsiellosis in fish: a brief review. J. Biosci. 32, 1331-1344.   DOI
28 Bang, I. S., Audia, J. P., Park, Y. K. and Foster, J. W. 2002. Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol. Microbiol. 44, 1235-1250.   DOI
29 Boor, K. J. 2006. Bacterial stress responses: What doesn't kill them can make them stronger. PLoS Biol. 4, e23.   DOI