Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.11.2014.0122

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants  

Kim, Ji-Seong (Graduate School of Life and Environmental Sciences, University of Tsukuba)
Lee, Jeongeun (Graduate School of Life and Environmental Sciences, University of Tsukuba)
Lee, Chan-Hui (Graduate School of Biotechnology, Kyung Hee University)
Woo, Su Young (Department of Environmental Horticulture, The University of Seoul)
Kang, Hoduck (Department of Biological and Environmental Science, Dongguk University)
Seo, Sang-Gyu (Department of Environmental Horticulture, The University of Seoul)
Kim, Sun-Hyung (Department of Environmental Horticulture, The University of Seoul)
Publication Information
The Plant Pathology Journal / v.31, no.2, 2015 , pp. 195-201 More about this Journal
Abstract
Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.
Keywords
antifungal activities; disease resistance; plant growth promoting rhizobacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, D. J. 2004. Fungal cell wall chitinases and glucanases. Microbiology 150:2029-2035.   DOI   ScienceOn
2 Agrios, G. N. 2005. Plant Pathology, 5th edn. Elsevier Academic Press, Oxford UK.
3 Defago, G. 1993. 2,4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol. 42:311-312.   DOI   ScienceOn
4 Duijff, B. J., Bakker, P. A. H. M. and Schippers, B. 1994. Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci. Technol. 4:279-88.   DOI   ScienceOn
5 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.   DOI   ScienceOn
6 Kim, S.-H. and Hamada, T. 2005. Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.) Lam. Biotech. Lett. 27:1841-1845.   DOI
7 Kader, J. C. 1996. Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:627-654.   DOI
8 Kim, Y.-H., Kim, C. Y., Song, W.-K., Park, D.-S., Kwon, S.-Y., Lee, H.-S., Bang, J.-W. and Kwak, S.-S. 2008. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-881.   DOI
9 Lagrimini, L. M., Burkhart, W., Moyer, M. and Rothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA 84:7542-7546.   DOI   ScienceOn
10 Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J. and Van Pee, K. H. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 56:688-695.   DOI
11 Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissue : II. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase. Plant Physiol. 88:936-942.   DOI   ScienceOn
12 Moyne, A. L., Cleveland, T. E. and Tuzun, S. 2004. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 234:43-49.   DOI
13 Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Cristophersen, C., Givskov, M. and Sorensen, J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizophere. Appl. Environ. Microbiol. 68:3416-3423.   DOI
14 Raaijmakers, J. M., Vlami, M. and De Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537-547.   DOI
15 Park, K. S. and Kloepper, J. W. 2000. Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18:2-9.   DOI   ScienceOn
16 Passardi, F., Penel, C. and Dunand, C. 2004. Performing the paradoxical:how plant peroxidases modify the cell wall. Trends Plant Sci. 9:534-540.   DOI   ScienceOn
17 Pieterse, C. M. J , Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.   DOI
18 Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891-894.   DOI   ScienceOn
19 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819.   DOI   ScienceOn
20 Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.   DOI   ScienceOn
21 Sels, J., Mathys, J. De Coninck, B. M., Cammue, B. P. and De Bolle, M. F. 2008. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46:941-950.   DOI   ScienceOn
22 Van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.   DOI   ScienceOn
23 Sharifi-Tehrani, A., Zala, M., Natsch, A., Moenne-Loccoz, Y. and Defago, G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104:631-643.   DOI
24 Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223-233.   DOI   ScienceOn
25 Song, J. Y., Kim, H. A., Kim, J.-S., Kim, S.-Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S.-K., Lee, C. H., Yu, D. S., Kim, B. K., Kim, S.-H., Kwon, S. Y. and Kim, J. F 2012. Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. J. Bacteriol. 194:3760-3761.   DOI   ScienceOn
26 Van Loon, L. C. and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97.   DOI   ScienceOn
27 Vespermann, A., Kai, M. and Piechulla, B. 2007. Rhizobacterial Volatiles Affect the Growth of Fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641.   DOI   ScienceOn
28 Yedidia, I., Benhamou, N. and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070.
29 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511.   DOI   ScienceOn