• 제목/요약/키워드: Generalized stability

검색결과 457건 처리시간 0.026초

APPROXIMATE RING HOMOMORPHISMS OVER p-ADIC FIELDS

  • Park, Choonkil;Jun, Kil-Woung;Lu, Gang
    • 충청수학회지
    • /
    • 제19권3호
    • /
    • pp.245-261
    • /
    • 2006
  • In this paper, we prove the generalized Hyers-Ulam stability of ring homomorphisms over the p-adic field $\mathbb{Q}_p$ associated with the Cauchy functional equation f(x+y) = f(x)+f(y) and the Cauchy-Jensen functional equation $2f(\frac{x+y}{2}+z)=f(x)+f(y)+2f(z)$.

  • PDF

GENERALIZED CUBIC MAPPINGS OF r-TYPE IN SEVERAL VARIABLES

  • Kang, Dong Seung
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.37-45
    • /
    • 2007
  • Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f:X{\rightarrow}Y$ satisfies $$r^3f(\frac{\Sigma_{j=1}^{n-1}x_j+2x_n}{r})+r^3f(\frac{\Sigma_{j=1}^{n-1}x_j-2x_n}{r})+8\sum_{j=1}^{n-1}f(x_j)=2f{\sum_{j=1}^{n-1}}x_j)+4{\sum_{j=1}^{n-1}}(f(x_j+x_n)+f(x_j-x_n))$$ for all $x_1,{\cdots},x_n{\in}X$.

  • PDF

A General System of Nonlinear Functional Equations in Non-Archimedean Spaces

  • Ghaemi, Mohammad Bagher;Majani, Hamid;Gordji, Madjid Eshaghi
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.419-433
    • /
    • 2013
  • In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a system of functional equations, called general system of nonlinear functional equations, in non-Archimedean normed spaces and Menger probabilistic non-Archimedean normed spaces.

FIXED POINT THEOREM ON SOME ORDERED METRIC SPACES AND ITS APPLICATION

  • CHANG HYEOB SHIN
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.93-104
    • /
    • 2024
  • In this paper, we will prove a fixed point theorem for self-mappings on a generalized quasi-ordered metric space which is a generalization of the concept of a generalized metric space with a partial order and we investigate a genralized quasi-ordered metric space related with fuzzy normed spaces. Further, we prove the stability of some functional equations in fuzzy normed spaces as an application of our fixed point theorem.

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계 (Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

시변 시간지연을 갖는 이산시스템의 시변 불확실성의 안정 범위 (Stability Bounds of Time-Varying Uncertainty and Delay Time for Discrete Systems with Time-Varying Delayed State)

  • 한형석
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.895-901
    • /
    • 2012
  • The stability robustness problem of linear discrete systems with time-varying unstructured uncertainty of delayed states with time-varying delay time is considered. The proposed conditions for stability can be used for finding allowable bounds of timevarying uncertainty and delay time, which are solved by using LMI (Linear Matrix Inequality) and GEVP (Generalized Eigenvalue Problem) known as powerful computational methods. Furthermore, the conditions can imply the several previous results on the uncertainty bounds of time-invariant delayed states. Numerical examples are given to show the effectiveness of the proposed algorithms.

A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability

  • Kim, Sang-Dong;Kwon, Jong-Kyum;Piao, Xiangfan;Kim, Phil-Su
    • Kyungpook Mathematical Journal
    • /
    • 제51권4호
    • /
    • pp.435-456
    • /
    • 2011
  • The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocation points. It is observed how the stability region does depend on collocation points. In particular, A-stability is shown by taking the mid points of nodes as collocation points.

ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung-Rye;Jang, Sun-Young;Shin, Dong-Yun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권1호
    • /
    • pp.65-80
    • /
    • 2010
  • In [17, 18], the fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations in fuzzy Banach spaces: (0.1) f(x + y) + f(x - y) = 2f(x) + 2f(y), (0.2) f(ax + by) + f(ax - by) = $2a^2 f(x)\;+\;2b^2f(y)$ for nonzero real numbers a, b with $a\;{\neq}\;{\pm}1$.