
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 19, No.3, September 2006

APPROXIMATE RING HOMOMORPHISMS OVER
p-ADIC FIELDS

Choonkil Park*, Kil-Woung Jun**, and Gang Lu***

Abstract. In this paper, we prove the generalized Hyers–Ulam
stability of ring homomorphisms over the p-adic field Qp associated
with the Cauchy functional equation f(x+y) = f(x)+f(y) and the
Cauchy–Jensen functional equation 2f(x+y

2
+ z) = f(x) + f(y) +

2f(z).

1. Introduction and preliminaries

In [9], Hensel introduced the concept of p-adic numbers as a tool for
solving problems in algebra and number theory. His idea was to extend
the analogies between the ring of integers Z and the field of rational
numbers Q to the field of rational functions and Laurent series. The way
this was accomplished was by expressing any rational number x ∈ Q as
the sum

x =
∞∑

n≥n0

anpn,

where p is a prime number and n0, an ∈ Z (an ≤ p − 1). For a fixed
value of p, we denote by Qp the complete field of p-adic numbers (see
[8]).

In 1940, S.M. Ulam [41] gave a talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of un-
solved problems. Among these was the following question concerning
the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·).
Given ε > 0, does there exist a δ > 0 such that if f : G → G′ satisfies
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ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a homomorphism h : G →
G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and
some interesting variations of the problem have also been investigated.
We shall call such an f : G → G′ an approximate homomorphism.

In 1941, D.H. Hyers [10] considered the case of approximately additive
mappings f : E → E′, where E and E′ are Banach spaces and f satisfies
Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

No continuity conditions are required for this result, but if f(tx) is con-
tinuous in the real variable t for each fixed x ∈ E, then L is linear,
and if f is continuous at a single point of E then L : E → E′ is also
continuous.

In 1978, Th.M. Rassias [32] provided a generalization of Hyers’ The-
orem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping
from a normed vector space E into a Banach space E′ subject to the
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping
which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p(1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2)
for x 6= 0.
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In 1990, Th.M. Rassias [33] during the 27th International Symposium
on Functional Equations asked the question whether such a theorem can
also be proved for p ≥ 1. In 1991, Z. Gajda [6] following the same ap-
proach as in Th.M. Rassias [32], gave an affirmative solution to this
question for p > 1. It was shown by Z. Gajda [6], as well as by Th.M.
Rassias and P. Šemrl [38] that one cannot prove a Th.M. Rassias’ type
Theorem when p = 1. The counterexamples of Z. Gajda [6], as well as of
Th.M. Rassias and P. Šemrl [38] have stimulated several mathematicians
to invent new definitions of approximately additive or approximately lin-
ear mappings, cf. P. Găvruta [7], S. Czerwik [3], S. Jung [17], who among
others studied the Hyers–Ulam stability of functional equations. The in-
equality (1.1) that was introduced for the first time by Th.M. Rassias
[32] provided a lot of influence in the development of a generalization of
the Hyers–Ulam stability concept. This new concept is known as gener-
alized Hyers–Ulam stability of functional equations (cf. the books of P.
Czerwik [4], D.H. Hyers, G. Isac and Th.M. Rassias [11], S. Jung [18]).

Beginning around the year 1980 the topic of approximate homomor-
phisms and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (cf. D.H. Hyers
and Th.M. Rassias [13], Th.M. Rassias [36] and the references therein).

J.M. Rassias [28] following the spirit of the innovative approach of
Th.M. Rassias [32] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p ·
‖y‖q for p, q ∈ R with p + q 6= 1 (see also [29] for a number of other new
results).

P. Găvruta [7] provided a further generalization of Th.M. Rassias’
Theorem. In 1996, G. Isac and Th.M. Rassias [14] applied the gener-
alized Hyers–Ulam stability theory to prove fixed point theorems and
study some new applications in Nonlinear Analysis. In [12], D.H. Hy-
ers, G. Isac and Th.M. Rassias studied the asymptoticity aspect of
Hyers–Ulam stability of mappings. In [26], the author introduced the
Cauchy–Jensen functional equation and proved the generalized Hyers–
Ulam stability of the Cauchy–Jensen functional equation in Banach
spaces. Several papers have been published on various generalizations
and applications of Hyers–Ulam stability and generalized Hyers–Ulam
stability to a number of functional equations and mappings, for exam-
ple: quadratic functional equation, invariant means, multiplicative map-
pings - superstability, bounded nth differences, convex functions, gen-
eralized orthogonality functional equation, Euler–Lagrange functional
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equation, Navier–Stokes equations. Several mathematician have con-
tributed works on these subjects; we mention a few: M. Amyari and
M.S. Moslehian [1], L.M. Arriola and W.A. Beyer [2], K. Jun and H.
Kim [15, 16], C. Park [22], C. Park, J. Park and J. Shin [27], F. Skof
[40].

Everett and Ulam [5] presented results on generalizing Lorentz groups
over p-adic fields. p-adic fields have become of considerable interest to
physicists. A key property of p-adic fields is that they do not satisfy
the Archimedean axiom; for all a, b > 0, there exists an integer n such
that a < nb. This property has been found to be useful in theoret-
ical physics. In quantum mechanics [20, 21], it has been recognized
that fundamental limitations on measuring conjugate quantities such as
position-momentum or energy-time exist because of the Heisenberg un-
certainty principle. For example, any attempt at taking gravitational
measurements at sub-Planck domains, say, of the order of l = 10−35m,
would change the underlying geometry and introduce distortions to l.
Introducing a p-adic space-time could provide a means of quantifying
the non-localization affects.

We recall some definitions and results that will be needed later.

Definition 1.2. (Non-Archimedean Valuation) LetK denote a scalar
field, and | · | denote the usual absolute value, where | · | : K → R. A
non-Archimedean valuation is a function | · |p that satisfies the strong
triangle inequality; namely,

|x + y|p ≤ max{|x|p, |y|p} ≤ |x|p + |y|p
for all x, y ∈ K. The associated fieldK is referred to as a non-Archimedean
field.

Lemma 1.3. [8] For any nonzero rational number x, there exists a
unique integer n ∈ Z such that x = a

b pn, where a and b are integers not
divisible by p. The p-adic valuation is defined by |x|p := p−n.

Definition 1.4. (p-adic Field) For each prime p, define the p-adic
fieldQp to be the set of all p-adic expansionsQp := {x | x =

∑∞
k≥n0

akp
k},

where ak ≤ p− 1 are integers.

Throughout this paper, assume that B is a real Banach algebra with
norm ‖ · ‖.

In this paper, we prove the generalized Hyers–Ulam stability of ring
homomorphisms over the p-adic fields Qp associated with the Cauchy
functional equation and the Cauchy–Jensen functional equation.
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2. Stability of ring homomorphisms over the p-adic field Qp

associated with the Cauchy functional equation

In this section, we prove the generalized Hyers–Ulam stability of ring
homomorphisms over the p-adic field Qp associated with the Cauchy
functional equation.

Theorem 2.1. Let r < 1 be a nonnegative real number and f : Qp →
B a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(|x|rp + |y|rp),(2.1)

‖f(xy)− f(x)f(y)‖ ≤ θ(|x|rp + |y|rp)(2.2)

for all x, y ∈ Qp. Then there exists a unique ring homomorphism H :
Qp → B such that

‖f(x)−H(x)‖ ≤ 2θ

2− 2r
|x|rp(2.3)

for all x ∈ Qp.

Proof. Letting y = x in (2.1), we get

‖f(2x)− 2f(x)‖ ≤ 2θ|x|rp
for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ θ|x|rp

for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

2rjθ

2j
|x|rp(2.4)

for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (2.4) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping H : Qp → B by

H(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
By (2.1),

‖H(x + y)−H(x)−H(y)‖ = lim
n→∞

1
2n
‖f(2nx + 2ny)− f(2nx)− f(2ny)‖

≤ lim
n→∞

2nr

2n
θ(|x|rp + |y|rp) = 0
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for all x, y ∈ Qp. So

H(x + y) = H(x) + H(y)

for all x, y ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (2.4), we get (2.3).

Now, let T : Qp → B be another Cauchy additive mapping satisfying
(2.3). Then we have

‖H(x)− T (x)‖ =
1
2n
‖H(2nx)− T (2nx)‖

≤ 1
2n

(‖H(2nx)− f(2nx)‖+ ‖T (2nx)− f(2nx)‖)

≤ 4 · 2nrθ

(2− 2r)2n
|x|rp,

which tends to zero as n → ∞ for all x ∈ Qp. So we can conclude that
H(x) = T (x) for all x ∈ Qp. This proves the uniqueness of H.

It follows from (2.2) that

‖H(xy)−H(x)H(y)‖ = lim
n→∞

1
4n
‖f(4nxy)− f(2nx)f(2ny)‖

≤ lim
n→∞

2nr

4n
θ(|x|rp + |y|rp) = 0

for all x, y ∈ Qp.
Therefore, there exists a unique ring homomorphism H : Qp → B

satisfying (2.3), as desired.

Theorem 2.2. Let r < 1
2 be a nonnegative real number and f : Qp →

B a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ · |x|rp · |y|rp,(2.5)

‖f(xy)− f(x)f(y)‖ ≤ θ · |x|rp · |y|rp(2.6)

for all x, y ∈ Qp. Then there exists a unique ring homomorphism H :
Qp → B such that

‖f(x)−H(x)‖ ≤ θ

2− 4r
|x|2r

p(2.7)

for all x ∈ Qp.

Proof. Letting y = x in (2.5), we get

‖f(2x)− 2f(x)‖ ≤ θ|x|2r
p

for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ θ

2
|x|2r

p
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for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

4rjθ

2j+1
|x|2r

p(2.8)

for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (2.8) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping H : Qp → B by

H(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
By (2.5),

‖H(x + y)−H(x)−H(y)‖ = lim
n→∞

1
2n
‖f(2nx + 2ny)− f(2nx)− f(2ny)‖

≤ lim
n→∞

4nr

2n
θ · |x|rp · |y|rp = 0

for all x, y ∈ Qp. So

H(x + y) = H(x) + H(y)

for all x, y ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (2.8), we get (2.7).

Now, let T : Qp → B be another Cauchy additive mapping satisfying
(2.7). Then we have

‖H(x)− T (x)‖ =
1
2n
‖H(2nx)− T (2nx)‖

≤ 1
2n

(‖H(2nx)− f(2nx)‖+ ‖T (2nx)− f(2nx)‖)

≤ 2 · 4nrθ

(2− 4r)2n
|x|2r

p ,

which tends to zero as n → ∞ for all x ∈ Qp. So we can conclude that
H(x) = T (x) for all x ∈ Qp. This proves the uniqueness of H.

It follows from (2.6) that

‖H(xy)−H(x)H(y)‖ = lim
n→∞

1
4n
‖f(4nxy)− f(2nx)f(2ny)‖

≤ lim
n→∞

4nr

4n
θ · |x|rp · |y|rp) = 0

for all x, y ∈ Qp.
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Therefore, there exists a unique ring homomorphism H : Qp → B
satisfying (2.7), as desired.

Theorem 2.3. Let r > 2 be a real number and f : B → Qp a
mapping such that

|f(x + y)− f(x)− f(y)|p ≤ θ(‖x‖r + ‖y‖r),(2.9)
|f(xy)− f(x)f(y)|p ≤ θ(‖x‖r + ‖y‖r)(2.10)

for all x, y ∈ B. Then there exists a unique ring homomorphism H :
B → Qp such that

|f(x)−H(x)|p ≤ 2θ

2r − 2
‖x‖r(2.11)

for all x ∈ B.

Proof. Letting y = x in (2.9), we get

|f(2x)− 2f(x)|p ≤ 2θ‖x‖r

for all x ∈ B. So

|f(x)− 2f(
x

2
)|p ≤ 2θ

2r
‖x‖r

for all x ∈ B. Hence

|2lf(
x

2l
)− 2mf(

x

2m
)|p ≤

m−1∑

j=l

2j+1θ

2rj+r
‖x‖r(2.12)

for all nonnegative integers m and l with m > l and all x ∈ B. It follows
from (2.12) that the sequence {2nf( x

2n )} is a Cauchy sequence for all
x ∈ B. Since Qp is complete, the sequence {2nf( x

2n )} converges. So one
can define the mapping H : B → Qp by

H(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ B.
By (2.9),

|H(x + y)−H(x)−H(y)|p = lim
n→∞ |2

n(f(
x

2n
+

y

2n
)− f(

x

2n
)− f(

y

2n
))|p

≤ lim
n→∞

2n

2nr
θ(‖x‖r + ‖y‖r) = 0

for all x, y ∈ B. So

H(x + y) = H(x) + H(y)

for all x, y ∈ B. Moreover, letting l = 0 and passing the limit m → ∞
in (2.12), we get (2.11).
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By the same method as in the proof of Theorem 2.1, one can prove
the uniqueness of H.

It follows from (2.10) that

|H(xy)−H(x)H(y)|p = lim
n→∞ |4

n(f(
xy

4n
)− f(

x

2n
)f(

y

2n
))|p

≤ lim
n→∞

4n

2nr
θ(‖x‖r + ‖y‖r) = 0

for all x, y ∈ B.
Therefore, there exists a unique ring homomorphism H : B → Qp

satisfying (2.11), as desired.

Theorem 2.4. Let r > 1 be a real number and f : B → Qp a
mapping such that

|f(x + y)− f(x)− f(y)|p ≤ θ · ‖x‖r · ‖y‖r,(2.13)
|f(xy)− f(x)f(y)|p ≤ θ · ‖x‖r · ‖y‖r(2.14)

for all x, y ∈ B. Then there exists a unique ring homomorphism H :
B → Qp such that

|f(x)−H(x)|p ≤ θ

4r − 2
‖x‖2r(2.15)

for all x ∈ B.

Proof. Letting y = x in (2.13), we get

|f(2x)− 2f(x)|p ≤ θ‖x‖2r

for all x ∈ B. So

|f(x)− 2f(
x

2
)|p ≤ θ

4r
‖x‖2r

for all x ∈ B. Hence

|2lf(
x

2l
)− 2mf(

x

2m
)|p ≤

m−1∑

j=l

2jθ

4rj+r
‖x‖2r(2.16)

for all nonnegative integers m and l with m > l and all x ∈ B. It follows
from (2.16) that the sequence {2nf( x

2n )} is a Cauchy sequence for all
x ∈ B. Since Qp is complete, the sequence {2nf( x

2n )} converges. So one
can define the mapping H : B → Qp by

H(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ B.
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By (2.13),

|H(x + y)−H(x)−H(y)|p = lim
n→∞ |2

n(f(
x

2n
+

y

2n
)− f(

x

2n
)− f(

y

2n
))|p

≤ lim
n→∞

2n

4nr
θ · ‖x‖r · ‖y‖r = 0

for all x, y ∈ B. So

H(x + y) = H(x) + H(y)

for all x, y ∈ B. Moreover, letting l = 0 and passing the limit m → ∞
in (2.16), we get (2.15).

By the same method as in the proof of Theorem 2.2, one can prove
the uniqueness of H.

It follows from (2.14) that

|H(xy)−H(x)H(y)|p = lim
n→∞ |4

n(f(
xy

4n
)− f(

x

2n
)f(

y

2n
))|p

≤ lim
n→∞

4n

4nr
θ · ‖x‖r · ‖y‖r = 0

for all x, y ∈ B.
Therefore, there exists a unique ring homomorphism H : B → Qp

satisfying (2.15).

3. Stability of ring homomorphisms over the p-adic field Qp

associated with the Cauchy–Jensen functional equation

In this section, we prove the generalized Hyers–Ulam stability of ring
homomorphisms over the p-adic field Qp associated with the Cauchy–
Jensen functional equation.

Theorem 3.1. Let r < 1 be a nonnegative real number and f : Qp →
B a mapping satisfying (2.2) such that

‖2f(
x + y

2
+ z)− f(x)− f(y)− 2f(z)‖ ≤ θ(|x|rp + |y|rp + |z|rp)(3.1)

for all x, y, z ∈ Qp. Then there exists a unique ring homomorphism
H : Qp → B such that

‖f(x)−H(x)‖ ≤ 3θ

2(2− 2r)
|x|rp(3.2)

for all x ∈ Qp.
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Proof. Letting y = z = x in (3.1), we get

‖2f(2x)− 4f(x)‖ ≤ 3θ|x|rp
for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ 3θ

4
|x|rp

for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

3 · 2rjθ

4 · 2j
|x|rp(3.3)

for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (3.3) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping H : Qp → B by

H(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
By (3.1),

‖2H(
x + y

2
+ z)−H(x)−H(y)− 2H(z)‖

= lim
n→∞

1
2n
‖2f(

2nx + 2ny

2
+ 2nz)− f(2nx)− f(2ny)− 2f(2nz)‖

≤ lim
n→∞

2nr

2n
θ(|x|rp + |y|rp + |z|rp) = 0

for all x, y, z ∈ Qp. So

2H(
x + y

2
+ z) = H(x) + H(y) + 2H(z)

for all x, y, z ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (3.3), we get (3.2).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let r < 1
3 be a nonnegative real number and f : Qp →

B a mapping satisfying (2.6) such that

‖2f(
x + y

2
+ z)− f(x)− f(y)− 2f(z)‖ ≤ θ · |x|rp · |y|rp · |z|rp(3.4)

for all x, y, z ∈ Qp. Then there exists a unique ring homomorphism
H : Qp → B such that

‖f(x)−H(x)‖ ≤ θ

2(2− 8r)
|x|3r

p(3.5)
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for all x ∈ Qp.

Proof. Letting y = z = x in (3.4), we get

‖2f(2x)− 4f(x)‖ ≤ θ|x|3r
p

for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ θ

4
|x|3r

p

for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

8rjθ

2j+2
|x|3r

p(3.6)

for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (3.6) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping H : Qp → B by

H(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
By (3.4),

‖2H(
x + y

2
+ z)−H(x)−H(y)− 2H(z)‖

= lim
n→∞

1
2n
‖2f(

2nx + 2ny

2
+ 2nz)− f(2nx)− f(2ny)− 2f(2nz)‖

≤ lim
n→∞

8nr

2n
θ · |x|rp · |y|rp · |z|rp = 0

for all x, y, z ∈ Qp. So

2H(
x + y

2
+ z) = H(x) + H(y) + 2H(z)

for all x, y, z ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (3.6), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 3.3. Let r > 2 be a real number and f : B → Qp a
mapping satisfying (2.10) such that

|2f(
x + y

2
+ z)− f(x)− f(y)− 2f(z)|p ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)(3.7)
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for all x, y, z ∈ B. Then there exists a unique ring homomorphism
H : B → Qp such that

|2f(x)−H(x)|p ≤ 3θ

2r − 2
‖x‖r(3.8)

for all x ∈ B.

Proof. Letting y = z = x in (3.7), we get

|2f(2x)− 4f(x)|p ≤ 3θ‖x‖r

for all x ∈ B. So
|2f(x)− 4f(

x

2
)|p ≤ 3θ

2r
‖x‖r

for all x ∈ B. Hence

|2l · 2f(
x

2l
)− 2m · 2f(

x

2m
)|p ≤

m−1∑

j=l

3 · 2jθ

2r · 2rj
‖x‖r(3.9)

for all nonnegative integers m and l with m > l and all x ∈ B. It follows
from (3.9) that the sequence {2n · 2f( x

2n )} is a Cauchy sequence for all
x ∈ B. Since Qp is complete, the sequence {2n · 2f( x

2n )} converges. So
one can define the mapping H : B → Qp by

H(x) := lim
n→∞ 2n · 2f(

x

2n
)

for all x ∈ B.
By (3.7),

|2H(
x + y

2
+ z)−H(x)−H(y)− 2H(z)|p

= lim
n→∞ |2

n(4f(
x

2n+1
+

y

2n+1
+

z

2n
)− 2f(

x

2n
)− 2f(

y

2n
)− 4f(

z

2n
))|p

≤ lim
n→∞

2 · 2r

2nr
θ(‖x‖r + ‖y‖r + ‖z‖r) = 0

for all x, y, z ∈ B. So

2H(
x + y

2
+ z) = H(x) + H(y) + 2H(z)

for all x, y, z ∈ B. Moreover, letting l = 0 and passing the limit m →∞
in (3.9), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.3.

Theorem 3.4. Let r > 1 be a real number and f : B → Qp a
mapping satisfying (2.14) such that

|2f(
x + y

2
+ z)− f(x)− f(y)− 2f(z)|p ≤ θ · ‖x‖r · ‖y‖r · ‖z‖r(3.10)
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for all x, y, z ∈ B. Then there exists a unique Cauchy–Jensen additive
mapping H : B → Qp such that

|2f(x)−H(x)|p ≤ θ

(8r − 2)
‖x‖3r(3.11)

for all x ∈ B.

Proof. Letting y = z = x in (3.10), we get

|2f(2x)− 4f(x)|p ≤ θ‖x‖3r

for all x ∈ B. So

|2f(x)− 4f(
x

2
)|p ≤ θ

8r
‖x‖3r

for all x ∈ B. Hence

|2l · 2f(
x

2l
)− 2m · 2f(

x

2m
)|p ≤

m−1∑

j=l

2jθ

8rj+1
‖x‖3r(3.12)

for all nonnegative integers m and l with m > l and all x ∈ B. It follows
from (3.12) that the sequence {2n · 2f( x

2n )} is a Cauchy sequence for all
x ∈ B. Since Qp is complete, the sequence {2n · 2f( x

2n )} converges. So
one can define the mapping H : B → Qp by

H(x) := lim
n→∞ 2n · 2f(

x

2n
)

for all x ∈ B.
By (3.10),

|2H(
x + y

2
+ z)−H(x)−H(y)− 2H(z)|p

= lim
n→∞ |2

n(4f(
x

2n+1
+

y

2n+1
+

z

2n
)− 2f(

x

2n
)− 2f(

y

2n
)− 4f(

z

2n
))|p

≤ lim
n→∞

2 · 8nr

2n
θ · ‖x‖r · ‖y‖r · ‖z‖r = 0

for all x, y, z ∈ B. So

2H(
x + y

2
+ z) = H(x) + H(y) + 2H(z)

for all x, y, z ∈ B. Moreover, letting l = 0 and passing the limit m →∞
in (3.12), we get (3.11).

The rest of the proof is similar to the proof of Theorem 2.4.
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