• Title/Summary/Keyword: Generalized resolvent operator

Search Result 30, Processing Time 0.023 seconds

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES

  • Verma, Ram U.
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.313-325
    • /
    • 2010
  • General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae-Ug;Kim, Soo-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1175-1188
    • /
    • 2009
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

GENERALIZED MULTIVALUED QUASIVARIATIONAL INCLUSIONS FOR FUZZY MAPPINGS

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • The Pure and Applied Mathematics
    • /
    • v.14 no.1 s.35
    • /
    • pp.37-48
    • /
    • 2007
  • In this paper, we introduce and study a class of generalized multivalued quasivariational inclusions for fuzzy mappings, and establish its equivalence with a class of fuzzy fixed-point problems by using the resolvent operator technique. We suggest a new iterative algorithm for the generalized multivalued quasivariational inclusions. Further, we establish a few existence results of solutions for the generalized multivalued quasivariational inclusions involving $F_r$-relaxed Lipschitz and $F_r$-strongly monotone mappings, and discuss the convergence criteria for the algorithm.

  • PDF

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.175-203
    • /
    • 2023
  • In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

ITERATIVE ALGORITHM FOR RANDOM GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS WITH RANDOM FUZZY MAPPINGS

  • Faizan Ahmad, Khan;Eid Musallam, Aljohani;Javid, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.881-894
    • /
    • 2022
  • In this paper, we consider a class of random generalized nonlinear mixed variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings in real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approximate solution of this class of inclusions. Further, we discuss the convergence analysis of the iterative algorithm under some appropriate conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.