• 제목/요약/키워드: Generalized covariance

검색결과 55건 처리시간 0.026초

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

ON GENERALIZATION OF COVARIANCE AND VARIANCE

  • Lin C.S.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권2호
    • /
    • pp.137-149
    • /
    • 2006
  • We introduce the notion of the generalized covariance and variance for bounded linear operators on Hilbert space, and prove that the generalized covariance-variance inequality holds. It turns out that the inequality is a useful formula in tile study of inequality involving linear operators in Hilbert spaces.

  • PDF

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권4호
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models

  • Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.235-240
    • /
    • 2013
  • Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.

An approach to improving the Lindley estimator

  • Park, Tae-Ryoung;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1251-1256
    • /
    • 2011
  • Consider a p-variate ($p{\geq}4$) normal distribution with mean ${\theta}$ and identity covariance matrix. Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the Lindley estimator under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or ${\Sigma}={\sigma}^2I$ for an unknown scalar ${\sigma}^2$.

A Covariance Matrix Estimation Method for Position Uncertainty of the Wheeled Mobile Robot

  • Doh, Nakju Lett;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1933-1938
    • /
    • 2003
  • A covariance matrix is a tool that expresses odometry uncertainty of the wheeled mobile robot. The covariance matrix is a key factor in various localization algorithms such as Kalman filter, topological matching and so on. However it is not easy to acquire an accurate covariance matrix because we do not know the real states of the robot. Up to the authors knowledge, there seems to be no established result on the covariance matrix estimation for the odometry. In this paper, we propose a new method which can estimate the covariance matrix from empirical data. It is based on the PC-method and shows a good estimation ability. The experimental results validate the performance of the proposed method.

  • PDF

영과잉 경시적 가산자료 분석을 위한 허들모형 (Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis)

  • 진익태;이근백
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.923-932
    • /
    • 2014
  • 허들모형은 영이 과잉 가산자료를 분석하기 위해서 사용되어 왔다. 이 모형은 이산부분을 위한 로짓모형과 절삭된 가산부분을 위한 절삭된 포아송모형의 혼합모형이다. 이 논문에서 우리는 경시적 영과잉 가산자료를 분석하기 위해서 수정된 콜레스키 분해을 이용하여 일반적인 이분산성을 가지는 변량효과 공분산행렬을 제안한다. 수정된 콜레스키 분해는 변량효과 공분산행렬을 일반화자기상관 모수와 혁신분산모수로 분리되면, 이러한 모수들은 베이지안 일반화 선형모형을 통해 추정된다. 그리고 실제 자료분석을 통하여 설명한다.

A marginal logit mixed-effects model for repeated binary response data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.413-420
    • /
    • 2008
  • This paper suggests a marginal logit mixed-effects for analyzing repeated binary response data. Since binary repeated measures are obtained over time from each subject, observations will have a certain covariance structure among them. As a plausible covariance structure, 1st order auto-regressive correlation structure is assumed for analyzing data. Generalized estimating equations(GEE) method is used for estimating fixed effects in the model.

  • PDF

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰 (Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model)

  • 김지영;이근백
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.211-219
    • /
    • 2015
  • 일반화 선형혼합모델은 일반적으로 경시적 범주형 자료를 분석하는데 사용된다. 이 모델에서 임의효과는 반복 측정치들의 시간에 따른 의존성을 설명한다. 임의효과 공분산행렬의 추정은 여러가지 제약조건들 때문에 쉽지 않은 문제이다. 제약조건으로는 행렬의 모수들의 수가 많으며, 또한 추정된 공분산행렬은 양정치성을 만족하여야 한다. 이러한 제한을 극복하기 위해, 임의효과 공분산행렬의 모형화를 위한 여러가지 방법이 제안되었다: 수정 단냠레스키분해, 이동평균 단냠레스키분해와 부분 자기상관행렬을 이용한 방법이 있다. 이 논문에서 위의 제안된 방법들을 소개한다.