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Abstract
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical

data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance
matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation
of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practi-
cally use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result
in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the ran-
dom effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition
approach has been used to explain a heterogenous random effects covariance matrix and the subsequent esti-
mated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic
Epidemiology Study using these methods.

Keywords: Modified Cholesky decomposition, heterogeneity, Positive definiteness.

1. Introduction

Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal cate-
gorical data when subject-specific effects are of interest (Breslow and Clayton, 1993). In the GLMMs,
the structure of a random effects covariance matrix is important for the estimation of fixed effects and
to explain subject and time variations. The estimation of the matrix is not simple because of the high
dimension and the positive definiteness; subsequently, we practically use the simple structure of the
covariance matrix such as AR(1) because of the positive definite constraint and the difficulty of es-
timation of the matrix. However, this strong assumption can result in biased estimates of the fixed
effects (Heagerty and Kurland, 2001).

To release the strong assumption, Pourahmadi (1999, 2000) proposed the modified Cholesky de-
composition which decomposes the random effects covariance matrix into two sets of parameters:
generalized autoregressive parameters(GARPs) and the innovation variances(IVs). The GARPs are
dependence parameters that are coefficients of previous random effects and the IVs are variance pa-
rameters for the current random effect. The positive definiteness restriction of the covariance matrix is
that the IVs need to be positive (Pourahmadi, 1999, 2000). In addition, the modified Cholesky decom-
position reduces the number of parameters in the covariance matrix and is used for the estimation of
the covariance matrix to analyze longitudinal Gaussian data (Daniels and Pourahmadi, 2002; Daniels
and Zhao, 2003; Pan and Mackenzie, 2003, 2006). Lee et al. (2012) proposed a GLMM with the
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heterogenous random effects covariance matrix depending on covariates via the modified Cholesky
decomposition. In this paper, we propose the Bayesian version of a GLMM with a heterogenous
random effects covariance matrix that is expressed through a modified Cholesky decomposition.

The paper is organized as follows. In Section 2, we describe the modified Cholesky decomposition
approach and subsequently use it to present a Bayesian modeling for GLMM. In Section 3, we analyze
data from the longitudinal study on metabolic syndrome. Finally, conclusions and extensions are
provided in Section 4.

2. Bayesian Generalized Linear Mixed Models for Longitudinal Binary Data

We first explain the generalized linear mixed model with a heterogenous random effects covariance
matrix.

2.1. Modified Cholesky decomposition for GLMM

Let Yit be the binary response for subject i (i = 1, . . . ,N) at time t (t = 1, . . . , T ) and let xit be
the corresponding vector of covariates. We assume that each Yit is conditionally independent given
random effects bit, the responses for different subjects are independent, and the regression model is
given by

logit pit(bit) = xitβ + bit, (2.1)

where pit(bit) = P(Yit = 1; bit) amd β is the p × 1 vector of regression coefficient. We assume that

bi = (bi1, . . . , bini )
T ∼ N(0,Σi),

where Σi is the random effects covariance matrix and bi is a vector of random effects values for subject
i.

To solve the positive-definiteness constraint and the exponentially increasing number of parame-
ters of Σi, we use the modified Cholesky decomposition. We have

bi1 = ei1, (2.2)

bit =

t−1∑
j=1

ϕi,t jbi j + eit, for t = 2, . . . , ni, (2.3)

where ei = (ei1, . . . , eini ) ∼ N(0,Di) with Di = diag(σ2
i1, . . . , σ

2
ini

). From (2.2) and (2.3), we have the
following matrix form as

Tibi = ei, (2.4)

where Ti is a lower triangular matrix having ones on its diagonal and −ϕi,t j at its (t, j)th position for
j < t. Then we have

TiΣiT T
i = Di.

Here, ϕi and σ2
i are called by the generalized autoregressive parameters(GARPs) and the innovation

variances(IVs), respectively. The GARP/IV parametrization provides parameters that can easily be
modeled without the concern of the estimator being positive definite, that have a sensible interpreta-
tion, and that allow for simple computation (Daniels and Zhao, 2003; Lee et al., 2012).
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The parameters, GARP and IV can be modeled using time and/or subject-specific covariate vectors
wi,t j and hi,t by setting

ϕi,t j = wT
i,t jγ, log

(
σ2

it

)
= hT

i,tλ, (2.5)

where γ is a a× 1 vector of unknown dependence parameters, λ is a b× 1 vector of unknown variance
parameters, design vectors wi,t j and hi,t are covariates to model the GARP/IV parameters as functions
of subject-specific covariates (Pourahmadi, 2000; Pourahmadi and Daniels, 2002; Daniels and Zhao,
2003; Lee et al., 2012). Therefore, the random effects covariance matrix can be heterogeneous in
the subject-specific covariates. Because the positive σ2

it guarantees the positive definiteness of Σi, the
loglinear model is used in (2.5).

2.2. Bayesian modeling

Now we specify the prior distributions of the parameters. The diffused prior distributions for β, γ, and
λ are given by

β ∼ N
(
0, σ2

βI
)
, (2.6)

γ ∼ N
(
0, σ2

γI
)
, (2.7)

λ ∼ N
(
0, σ2

λI
)
, (2.8)

where σ2
β = 100, σ2

γ = 100, and σ2
λ = 100.

From the sampling distribution (2.1) and prior distributions (2.6)–(2.8), we have the joint distri-
bution given by

f (y, b, β, γ, λ) ∝ ϕ
(
β|0, σ2

β

)
ϕ
(
γ|0, σ2

γ

)
ϕ
(
λ|0, σ2

λ

) N∏
i=1

 ni∏
t=1

(
pc

it (bit, β)
)yit

(
1−pc

it (bit, β)
)1−yit

 ϕ(bi|γ, λ)

 ,
where pc

it(bit, β) = P(Yit = 1|xit, bit, β) and ϕ(·) is the multivariate normal distribution function. For
the estimation of our model, Gibbs sampling is implemented using WinBUGS (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml). The WinBUGS code is available upon request.

2.3. Deviance information criterion

In Bayesian modeling, there are several model selection criteria such as Bayes factor, posterior pre-
dictive loss, and deviance information criterion(DIC) (Daniels and Hogan, 2008). Especially, we use
DIC for the model selection criterion of this paper. The DIC is commonly used to compare competing
models (Spiegelhalter et al., 2002) and it is a model-based criterion composed of a goodness of fit
term and a penalty term. Let θ be a vector of all parameters in (2.1). Then the fit is measured by the
deviance given by

Dev(θ) = −2 log L(θ|y),

where L(θ|y) is the likelihood of y = (t1, . . . , yN)T . Larger values of the deviance indicate poorer fit.
The penalty term measures model complexity and is given by

pD = E {Dev(θ)|y} − Dev {E(θ|y)} .
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The value of pD is called the effective number of parameters. The DIC is defined as

DIC = Dev {E(θ|y)} + 2pD

= −4E
{
log L(θ|y)|y} + 2 log L {E(θ|y)|y} .

In practice, DIC can be expressed in different ways depending on how E{Dev(θ)|y} and Dev{E(θ|y)}
are estimated or approximated. Celeux et al. (2006) compared various forms of DICs and suggested
DIC3 as one of the most reliable forms of DIC:

DIC3 = −4E
{
log L(θ|y)|y} + 2 log L

(
θ̂|y

)
,

where

L
(
θ̂|y

)
=

N∏
i=1

Eθ { f (yi|θ)|y}

with f (yi|θ) is a probability density function for subject i.
For our model, the first and second terms in DIC3 are approximated by a Markov chain Monte

Carlo(MCMC) algorithm as

E
{
log L(θ|y)|y} ≈ 1

M

M∑
l=1

N∑
i=1

ni∑
t=1

[
yit

(
xitβ

(l) + b(l)
it

)
+ log

(
1 − pc

it

(
b(l)

it , β
(l)
))]

and

log L
(
θ̂|y

)
≈

N∑
i=1

log

 1
M

M∑
l=1

ni∏
t=1

(
pc

it

(
b(l)

it , β
(l)
))yit

(
1 − pc

it

(
b(l)

it , β
(l)
))1−yit

 ,
where M is the number of iterations, pc

it(b
(l)
it , β

(l)) = exp(xitβ
(l) + b(l)

it )/(1 + exp(xitβ
(l) + b(l)

it )), and
(β(l), b(l)

it ) is the set of simulated random numbers at the lthe MCMC iteration.

3. Example

The Korean Genomic Epidemiology Study(KoGES) is a cohort study to monitor the development of
metabolic syndrome for 2310 Korean adults aged 39–69 years (Kim et al., 2006). Participants were
examined every two years for up to eight years to monitor the development of metabolic syndrome.
Metabolic syndrome is defined as three or more of the following five disorders: abdominal obesity
(waist circumference > 90cm in men or > 80cm in women), high blood pressure (systolic BP levels >
130mmHg or diastolic BP levels > 85mmHg), high impaired fasting glucose (IFG > 110mg/dl), high
triglyceridemia (TG > 150mg/dl), and low high-density lipoprotein cholesterol (HDL-C < 40mg/dl
in men or < 50mg/dl in women). It is of primary interest how demographic factors affect metabolic
syndrome. The demographic factors were sex, age, alcohol intake, and smoking.

We analyzed the effect of the demographic factors on metabolic syndrome in KoGES. In this pa-
per, we used the final binary outcome for metabolic syndrome (Y = 1 for presence of metabolic syn-
drome; 0 for absence of metabolic syndrome). For predictors, we included sex (1=male; 0= female),
age (log(age/10)), alcohol intake type (Drink1= 1 if drinking in the past, 0 otherwise; Drink2= 1 if
drinking currently, 0 otherwise), and smoking types (Smoke1= 1 if smoking in the past, 0 otherwise;
Smoke2= 1 if smoking currently, 0 otherwise).
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Table 1: Posterior means for generalized linear mixed model (95% credible intervals in the parentheses)
Model 1 Model 2

Fixed parameters: β
Intercept −7.070∗ (−8.588, −5.653) −7.190∗ (−8.769, −5.671)
Sex (male versus female) −0.727∗ (−1.413, −0.069) −0.734∗ (−1.425, −0.111)
log(Age/10) 2.114∗ ( 1.062, 3.005) 2.104∗ ( 1.112, 3.174)
Drink1 (past) 0.052 (−0.729, 0.828) 0.065 (−0.739, 0.885)
Drink2 (current) −0.572∗ (−1.063, −0.152) −0.596 (−1.113, −0.122)
Smoke1 (past) 0.590 (−0.131, 1.320) 0.605∗ (−0.123, 1.313)
Smoke2 (current) 1.260∗ ( 0.568, 1.995) 1.285∗ ( 0.558, 2.032)

GARP: γ
γ0 (AR(1)) 0.807∗ ( 0.756, 0.860) 0.803∗ ( 0.750, 0.857)
γ1 (AR(2)) −0.006 (−2.760, 2.837)

IV parameters: λ
λ0 2.751∗ ( 2.245, 3.235) 2.835∗ ( 2.393, 3.340)

DIC 23868.88 24845.49

∗ : Indicates significance at the 5 % level of significance.

We fit two models proposed in Section 2. Model 1 is a random effects logistic regression with
AR(1) structure of the random effects covariance matrix. Model 2 is the same model with AR(2)
structure of the covariance matrix. The posterior means, 95% confidence intervals, and the DIC
values for Models 1 and 2 are provided in Table 1. The DIC value for Model 1 (23868.88) is smaller
than Model 2 (24845.49); subsequently, this indicates that Model 1 is superior to Model 2.

In the GARP, the coefficient (γ0) for AR(1) were positive and the credible interval was above zero
which implies the significant positive relationship of random effects. The coefficient for AR(2) was
not significant. This indicates that the random effects covariance matrices had homogeneous AR(1)
structures. In the log(IV), the intercept (λ0) was significant and above zero.

In the fixed effects, the coefficients of gender (Sex), age (log(Age/10)), and current drinker (Drink
2), and current smoker (Smoke2) were significant because 95% credible intervals did not contain zero.
This indicates that the estimated conditional probability of metabolic syndrome was lower for males
than for females, was lower in current-drinking group than in non-drinking group, and was higher
in current-smoking group than in non-smoking group, respectively. The conditional probability of
Metabolic Syndrome increased as age increased.

4. Discussion

We proposed a Bayesian modeling of random effects covariance matrices for a generalized linear
mixed model with modified Cholesky decomposition approach. This approach allows a complex
structure of covariance matrix and satisfy the positive-definiteness of random effects covariance ma-
trix.

In the analysis of KoGES, we found that participant’s gender, age, current smoking group, and
current smoking group had statistically significant effects on metabolic syndrome. We also found that
the random effects covariance matrices had homogeneous AR(1) structures.
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