Browse > Article
http://dx.doi.org/10.7465/jkdi.2017.28.4.927

Poisson linear mixed models with ARMA random effects covariance matrix  

Choi, Jiin (Department of Statistics, Sungkyunkwan University)
Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
Publication Information
Journal of the Korean Data and Information Science Society / v.28, no.4, 2017 , pp. 927-936 More about this Journal
Abstract
To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.
Keywords
Cholesky decomposition; general linear mixed model; high dimensionality; longitudinal count data; positive-definite;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Jeon, J. and Lee, K. (2014). Review and discussion of marginalized random effects models. Journal of the Korean Data & Information Science Society, 25, 1263-1272.   DOI
2 Judge, G. G., Griffths, W. E., Hill, R. C., and Lee, T. C. (1980). The Theory and practice of ecomometrics, Wiley, New York.
3 Kim, J., Sohn, I., and Lee, K. (2017). Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models. Communications for Statistical Applications and Methods, 24, 81-96.   DOI
4 Lee, K., Baek, C. and Daniels, M. J. (2017). ARMA Cholesky factor models for the covariance matrix of linear models. Computational Statistics and Data Analysis, In press.
5 Lee, K. and Daniels, M. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380.   DOI
6 Lee, K., Jung, H. and Yoo, J. K. (2017a). Modeling of the ARMA random effects covariance matrix in logistic random effects models. Working paper.
7 Lee, K. and Kim, S. (2016). Modeling of random effects covariance matrix in marginalized random effects models. Journal of the Korean Data & Information Science Society, 27, 815-825.   DOI
8 Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models. Communications for Statistical Applications and Methods, 20, 235-240.   DOI
9 Lee, K., Lee, J., Hagan, J. and Yoo, J. K. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models. Computational Statistics and Data Analysis, 56, 1545-1551.   DOI
10 Lee, K. and Sung S. (2014). Autoregressive Cholesky factor model for marginalized random effects model. Communications for Statistical Applications and Methods, 21, 169-181.   DOI
11 Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 86, 677-690.   DOI
12 Lee, K. and Yoo, J. K. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models. Computational Statistics and Data Analysis, 80, 111-116.   DOI
13 Li, J., Yang, X., Wu, Y., and Shoptaw, S. (2007). A random-effects Markov transition model for Poisson-distributed repeated measures with nonignorable missing values. Statistics in Medicine, 26, 2519-2532.   DOI
14 Nam, S. and Lee, K. (2017). Comparison of the covariance matrix for general linear model. The Korean Journal of Applied Statistics, 30, 103-117.   DOI
15 Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435.   DOI
16 Wuertz, D. (2005). fOptions: Financial software collection-fOptions, R package version 220.10063. (http://www.rmetrics.org).
17 Agresti, A. (2002). Categorical data analysis, Wiley and Sons, New York.
18 Zeger, S. L. (1988). A regression model for time series of counts. Biometrika, 75, 621-629.   DOI
19 Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics, 44, 1019-1031.   DOI
20 Zhang, W. and Leng, C. (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika, 99, 141-150.   DOI
21 Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions Automatic Control, 19, 716-723.   DOI
22 Alosh, M. (2010). Modeling longitudinal count data with dropouts. Pharmaceutical Statistics, 9, 35-45.   DOI
23 Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 125-134.
24 Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566.   DOI
25 Daniels, M. J. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22, 1631-1647   DOI
26 Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. (2002). Analysis of longitudinal data, Oxford University Press, Oxford.
27 Faught, E., Wilder, B. J., Ramsay, R. E., Reife, R. A., Kramer, L. D., Pledger, G. W. and Karim, R. M. (1996). Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 46, 1684-1690.   DOI
28 Han, E. J. and Lee, K. (2016). Dynamic linear mixed models with ARMA covariance matrix. Communications for Statistical Applications and Methods, 23, 575-585.   DOI
29 Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973-985.   DOI