• Title/Summary/Keyword: Generalized convex functions

Search Result 49, Processing Time 0.021 seconds

HYPERGEOMETRIC DISTRIBUTION SERIES AND ITS APPLICATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS BASED ON SPECIAL FUNCTIONS

  • Murugusundaramoorthy, Gangadharan;Porwal, Saurabh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-684
    • /
    • 2021
  • The tenacity of the current paper is to find connections between various subclasses of analytic univalent functions by applying certain convolution operator involving generalized hypergeometric distribution series. To be more specific, we examine such connections with the classes of analytic univalent functions k - 𝓤𝓒𝓥* (𝛽), k - 𝓢*p (𝛽), 𝓡 (𝛽), 𝓡𝜏 (A, B), k - 𝓟𝓤𝓒𝓥* (𝛽) and k - 𝓟𝓢*p (𝛽) in the open unit disc 𝕌.

Multivalent Harmonic Uniformly Starlike Functions

  • Ahuja, Om;Joshi, Santosh;Sangle, Naveneet
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.545-555
    • /
    • 2009
  • In this paper, we investigate a generalized family of complex-valued harmonic functions that are multivalent, sense-preserving, and are associated with k-uniformly harmonic functions in the unit disk. The results obtained here include a number of known and new results as their special cases.

SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL

  • Valdes, Juan E. Napoles
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.587-596
    • /
    • 2021
  • In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

  • Sangle, N.D.;Metkari, A.N.;Joshi, S.B.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.887-902
    • /
    • 2021
  • In this paper, we have introduced a generalized class SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼), i ∈ {0, 1} of harmonic univalent functions in unit disc 𝕌, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). We further obtained extreme points, bounds and a covering result for the class 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of 𝜙 and 𝜓 are considered, which lead to various well-known results.

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

UPPER BOUNDS OF SECOND HANKEL DETERMINANT FOR UNIVERSALLY PRESTARLIKE FUNCTIONS

  • Ahuja, Om;Kasthuri, Murugesan;Murugusundaramoorthy, Gangadharan;Vijaya, Kaliappan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1019-1030
    • /
    • 2018
  • In [12,13] the researchers introduced universally convex, universally starlike and universally prestarlike functions in the slit domain ${\mathbb{C}}{\backslash}[1,{\infty})$. These papers extended the corresponding notions from the unit disc to other discs and half-planes containing the origin. In this paper, we introduce universally prestarlike generalized functions of order ${\alpha}$ with ${\alpha}{\leq}1$ and we obtain upper bounds of the second Hankel determinant ${\mid}a_2a_4-a^2_3{\mid}$ for such functions.

BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER BASED ON SUBORDINATE CONDITIONS INVOLVING HURWITZ-LERCH ZETA FUNCTION

  • Murugusundaramoorthy, G.;Janani, T.;Cho, Nak Eun
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.47-59
    • /
    • 2016
  • The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent functions of complex order defined in the open unit disk, which are associated with Hurwitz-Lerch zeta function and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

On Generalized Integral Operator Based on Salagean Operator

  • Al-Kharsani, Huda Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.359-366
    • /
    • 2008
  • Let A(p) be the class of functions $f\;:\;z^p\;+\;\sum\limits_{j=1}^{\infty}a_jz^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z)\;=\;z^p+\sum\limits_{j=1}^{\infty}(p+j)^{n+p-1}z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1}\;*\;f_{n+p-1}^{-1}=\frac{z^p}{(1-z)^{n+p}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if ${\int}_0^{2\pi}\|\frac{Re\;p(z)-\rho}{p-\rho}\|\;d\theta\;\leq\;k{\pi}$, where $z=re^{i\theta}$, $k\;\geq\;2$ and $0\;{\leq}\;\rho\;{\leq}\;p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)\;\;=\;f_{n+p-1}^{-1}\;*\;f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.